精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,点(n,
Sn
n
) (n∈N*)
均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
6
anan+1
,Tn是数列{bn}的前n项和,试求Tn
分析:(1)先求出Sn,然后利用当n≥2时,an=Sn-Sn-1代入求解,最后验证首项即可;
(2)将bn进行裂项,即bn=
6
anan+1
=
1
6n-5
-
1
6n+1
,然后进行求和,消去一些项即可求出数列{bn}的前n项和.
解答:解:(1)依题意得,
Sn
n
=3n-2
,即Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=1=6×1-5.
所以an=6n-5(n∈N*).
(2)由(1)得bn=
6
anan+1
=
6
(6n-5)[6(n+1)-5]
=
1
6n-5
-
1
6n+1

Tn=(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)=1-
1
6n+1
=
6n
6n+1
点评:本题主要考查了等差数列的通项公式以及利用裂项求和法求数列的和,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案