【题目】四棱锥中,底面是中心为的菱形,,.
(1)求证:平面;
(2)若直线与平面所成的角为,求二面角正弦值.
科目:高中数学 来源: 题型:
【题目】已知抛物线()的焦点F,E上一点到焦点的距离为4.
(1)求抛物线E的方程;
(2)过F作直线l交抛物线E于A,B两点,若直线AB中点的纵坐标为,求直线l的方程及弦的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“应用”的用户中随机抽取了100名用户进行调查得到如下数据:
每周使用时间 | 及以上 | |||||
男 | 4 | 3 | 3 | 7 | 6 | 30 |
女 | 6 | 5 | 4 | 4 | 8 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用该“应用”时间不超过的样本中,按性别分层抽样,随机抽取5名用户:
①求抽取的5名用户中男,女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果每周使用该“应用”超过的用户认为“喜欢该应用”,能否在犯错误的概率不超过0.05的前提下认为“喜欢该应用”与性别有关.
参考公式:,其中
下面的临界值表仅供参考:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象与x轴交点为,与此交点距离最小的最高点坐标为.
(Ⅰ)求函数的表达式;
(Ⅱ)若函数满足方程,求方程在内的所有实数根之和;
(Ⅲ)把函数的图像的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图像.若对任意的,方程在区间上至多有一个解,求正数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系的坐标平面内,若函数的图象与轴围成一个封闭区域,将区域沿轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是(为参数).
(1)求直线l和曲线的普通方程;
(2)设直线l和曲线交于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com