精英家教网 > 高中数学 > 题目详情
3.身高不同的7个人排成一排,要求正中间的个子最高,从中间向两边看一个比一个矮,则不同的排法有(  )种(  )
A.2B.8C.20D.120

分析 根据题意,分析可得:由于最高个子站在中间,只需排好左右两边,第一步:先排左边,第二步:将另外三人按从高到低的顺序排列,求出每一步的情况数目,有分步计数原理计算可得答案.

解答 解:根据题意,最高个子站在中间,只需排好左右两边,
第一步:先排左边,有C63=20种排法,
第二步:将另外三人按从高到低的顺序排列,有1种情况,
则不同的排法有20×1=20种,
故选:C.

点评 本题考查计数原理的应用,注意“从中间向两边看一个比一个矮”这一条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1-x2.设g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,10]内零点的个数为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,则此三角形有几个解(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=2,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*),则an=$\frac{2}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>3,则当函数$f(x)=x+\frac{4}{x-3}$取得最小值时,x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.十件有编号的零件,安排4个工人加工,每人分别加工2、2、3、3件,则安排方法有151200种(用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=$\frac{1}{3}{x^3}+{x^2}$+ax-5,若函数在[1,+∞)上总是单调函数,则a的取值范围a≥-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.《数学万花筒》第7页中谈到了著名的“四色定理”.问题起源于1852年的伦敦大学学院毕业生弗朗西斯•加斯里.他给自己的弟弟弗莱德里克写的信中提到:“可以使用四种(或更少)颜色为平面上画出的每张地图着色,使任何相邻的两个地区的边界线具有不同的颜色吗?”回答他这个问题用了124年,但简单的图形我们能用逐一列举的方法解决.若用红、黄、蓝、绿四种颜色给右边的地图着色,假定区域①已着红色,区域②已着黄色,则剩余的区域③④共有2种着色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足方程2x+y+5=0,那么$\sqrt{{x^2}+{y^2}-4x-2y+5}$的最小值为(  )
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案