精英家教网 > 高中数学 > 题目详情
8.十件有编号的零件,安排4个工人加工,每人分别加工2、2、3、3件,则安排方法有151200种(用数字表示).

分析 先将零件分组,再进行全排列即可.

解答 解:把10件零件分成2,2,3,3四份,共有$\frac{{C}_{10}^{2}{C}_{8}^{2}{C}_{6}^{3}{C}_{3}^{3}}{{A}_{2}^{2}•{A}_{2}^{2}}$=6300种分法,
把分好的四份零件分给4个人,共有${A}_{4}^{4}$=24种分法,
6300×24=151200,
故答案为:151200.

点评 本题主要考查了组合中的分组问题,关键是分组没有次序之分,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知观测所得数据如表:
未感冒感冒合计
用某种药252248500
未用某种药224276500
合计4765241000
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,
K2=$\frac{1000×(252×276-224×248)^{2}}{500×500×476×524}$≈3.143.
则有90%的把握认为用某种药与患感冒有关系.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知钝角△ABC中,三条边长为连续正整数.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.身高不同的7个人排成一排,要求正中间的个子最高,从中间向两边看一个比一个矮,则不同的排法有(  )种(  )
A.2B.8C.20D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x-1}$(a为常数)在($\frac{1}{4}$,$\frac{1}{2}$)内有唯一的极值点.
(1)求a的取值范围.
(2)若x1∈(0,$\frac{1}{2}$),x2∈(2,+∞),试判断f(x2)-f(x1)与$\frac{8}{9}$ln2+$\frac{2}{3}$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=3an+2(n∈N*),且a1=2.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(0,1),B(3,2),向量$\overrightarrow{CA}=(4,3)$,则向量$\overrightarrow{BC}$=(  )
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知tanθ=-$\frac{5}{12}$,θ∈($\frac{3π}{2}$,2π),则cos(θ+$\frac{π}{4}$)=(  )
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

同步练习册答案