精英家教网 > 高中数学 > 题目详情
设一扇形的半径为16,当扇形弧长为16π时,计算该扇形的圆心角为多大?面积是多少?
考点:扇形面积公式
专题:计算题,三角函数的求值
分析:直接利用扇形弧长、面积公式,即可得出结论.
解答: 解:∵扇形的半径为16,扇形弧长为16π,
∴圆心角α=
16π
16
=π,
该扇形的面积S=
1
2
lR=128π.
点评:本题考查扇形的面积公式的应用,考查弧长公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长为10厘米的线段AB上任取一点G,以AG为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是(  )
A、
9
25
B、
16
25
C、
3
10
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,a4=S2,a2n+2=2an
(1)求数列{an}的通项公式;
(2)若bn=
4
anan+1
,求数列{bn}的前n项和Tn,并求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若可变形的三角形模型在变换过程中三角形周长和面积可同时取得最小值(或最大值),则称此模型为“周积三角形”.某模型厂家用一根定长连接杆AD,两根单向伸缩连接杆AB、AC(A端固定,B、C端可伸缩)以及一根双向伸缩连接杆BC制作了如图所示的可变三角形模型(所有连接杆均为笔直的金属杆).模型中,双向伸缩杆BC用一个活动连接装置固定在D点,使BC可在D处自由转动.已知:模型中,∠BAD=∠CAD=60°,AD=1分米,AB和AC最多可伸长到5分米,BC的双向伸缩能力均很强.设AB=x分米,AC=y分米.
(1)将y表示成x的函数,并求其定义域;
(2)判断此模型是否为“周积三角形”模型,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(x)=
1
ax+
a

(1)求值:f(0)+f(1),f(-1)+f(2);
(2)由(1)的结果归纳概括对所有实数x都成立的一个等式,并加以证明;
(3)若a∈N*,求和:f(-(n-1))+f(-(n-2))+…+f(-1)+f(0)+…f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2(x-
π
6
)+2sin(x-
π
4
)sin(x+
π
4
)-1.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求函数f(x)在区间[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出不等式组
x≥0
y>-2
2x-y+4≥0
所表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求直线AB与平面EBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an>0,Sn为其前n项和,向量
AB
=(Sn,p2-an),
CD
=(1,p-1),且
AB
CD
,其中p>0且p≠1.
(1)求数列{an}的通项公式;
(2)若p=
1
2
,数列{bn}满足对任意n∈N*,都有b1an+b2an-1+…+bna1=2n-
1
2
n-1,求数列{bn}的前n项和
Tn

查看答案和解析>>

同步练习册答案