精英家教网 > 高中数学 > 题目详情

设函数定义域为
(1)若,求实数的取值范围;
(2)若上恒成立,求实数的取值范围.

(1),(2).

解析试题分析:(1)因为,所以上恒成立. ① 当时,由,得,不成立,舍去,② 当时,由,得,综上所述,实数的取值范围是.(2))恒成立问题一般利用变量分离法转化为最值问题. 依题有上恒成立,所以上恒成立, 令,则由,得,记,由于上单调递增, 所以                            
因此
试题解析:解:(1)因为,所以上恒成立.        2分
① 当时,由,得,不成立,舍去,    4分
② 当时,由,得,          6分
综上所述,实数的取值范围是.                 8分
(2)依题有上恒成立,             10分
所以上恒成立,         12分
,则由,得
,由于上单调递增,
所以                            
因此                               16分
(使用函数在定义区间上最小值大于0求解可参照给分)
考点:不等式恒成立问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM,并写出x的取值范围;
(2)求S关于x的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市环保部门对市中心每天环境污染情况进行调查研究,发现一天中环境污染指数与时刻(时)的关系为,其中是与气象有关的参数,且,用每天的最大值作为当天的污染指数,记作.
(1)令,求的取值范围;
(2)按规定,每天的污染指数不得超过2,问目前市中心的污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.
(1)试将表示成的函数;
(2)需要修建多少个增压站才能使最小,其最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (x∈R,且x≠2).
(1)求的单调区间;
(2)若函数与函数在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果n件产品中任取一件样品是次品的概率为,则认为这批产品中有件次品。某企业的统计资料显示,产品中发生次品的概率p与日产量n满足,有已知每生产一件正品可赢利a元,如果生产一件次品,非但不能赢利,还将损失元().
(1)求该企业日赢利额的最大值;
(2)为保证每天的赢利额不少于日赢利额最大值的50%,试求该企业日产量的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,上是被切去的等腰直角三角形斜边的两个端点,设
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的单调递减区间是           

查看答案和解析>>

同步练习册答案