精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-3ax2-3a2+a(a>0).
(1)求函数f(x)的单调区间;
(2)若曲线y=f(x)上有两点A(m,f(m))、B(n,f(n))处的切线都与y轴垂直,且函数y=f(x)在区间[m,n]上存在零点,求实数a的取值范围.

解:(1)f′(x)=3x2-6ax=3x(x-2a).令f′(x)=0,得x1=0,x2=2a
列表如下:
x(-∞,0)0(0,2a)2a(2a,+∞)
f′(x)+0-0+
f(x)递增-3a2+a递减?-4a3-3a2+a递增?
由上表可知,函数f(x)的单调递增区间为(-∞,0),(2a,+∞);单调递减区间为(0,2a).
(2)由(1)可知,m=0,n=2a且在x=0,x=2a处分别取得极值.
f(0)=-3a2+a,f(2a)=-4a3-3a2+a.由已知得函数y=f(x)在区间[0,2a]上存在零点,
∴f(0)×f(2a)≤0即(-3a2+a)(-4a3-3a2+a)≤0
∴a2(3a-1)(4a-1)(a+1)≤0
∵a>0
∴(3a-1)(4a-1)≤0,解得≤a≤故实数a的取值范围是[].
分析:(1)已知函数f(x)=x3-3ax2-3a2+a,对其进行求导,令f′(x)=0,求出极值点,从而求出其单调区间;
(2)由(1)可知,m=0,n=2a且在x=0,x=2a处分别取得极值,再根据零点定理求出实数a的取值范围.
点评:此题主要考查利用导数求函数的单调性,以及零点定理的应用,此题是一道中档题,这也是高考常考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案