分析 (1)由 2an+1+Sn-2=0,得2a2+a1=2,得到a2=$\frac{1}{2}$,由2an+1+Sn=2,2an+Sn-1=2(n≥2)相减,数列{an}从第二项开始,是以为$\frac{1}{2}$首项,以$\frac{1}{2}$为公比的等比数列,得到通项公式;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}为等差数列,分别取n=1,2,3,利用等差中项得到关于λ的方程解之即可.
解答 解:(1)由已知得到 2an+1+Sn=2,得2a2+a1=2,
又a1=1,
∴a2=$\frac{1}{2}$,
由2an+1+Sn=2,2an+Sn-1=2(n≥2)相减,
可得2an+1-an=0,
∴$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$.
又a2=$\frac{1}{2}$,
∴数列{an}是以为1首项,以$\frac{1}{2}$为公比的等比数列,
∴an=$(\frac{1}{2})^{n-1}$;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}为等差数列,则2(S2+2λ+$\frac{λ}{4}$)=(S1+λ+$\frac{λ}{2}$)+(S3+3λ+$\frac{λ}{8}$),整理得λ=2.
点评 本题考查了递推式的应用、等比数列的通项公式,等差中项,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $y=cos(2x+\frac{2π}{3})$ | B. | y=cos2x | C. | y=-cos2x | D. | $y=cos(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | ±$\frac{1}{5}$ | C. | $\frac{7}{5}$ | D. | ±$\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com