科目:高中数学 来源: 题型:解答题
如图,椭圆C:
=1(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.![]()
(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
、
, 焦距为2,过
作垂直于椭圆长轴的弦长
为3
(1)求椭圆的方程;
(2)若过点
的动直线
交椭圆于A、B两点,判断是否存在直线
使得
为钝角,若存在,求出直线
的斜率
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
=1(a>b>0)的离心率为
,且过点A(0,1).
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.![]()
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,离心率
,直线
的方程为
.![]()
(1)求椭圆
的方程;
(2)
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,⊙
是以
为直径的圆,直线
:
与⊙
相切,并且与椭圆交于不同的两点![]()
![]()
(1)求椭圆的标准方程;
(2)当
,且满足
时,求弦长
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com