已知
是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,⊙
是以
为直径的圆,直线
:
与⊙
相切,并且与椭圆交于不同的两点![]()
![]()
(1)求椭圆的标准方程;
(2)当
,且满足
时,求弦长
的取值范围.
(1)
;(2)
.
解析试题分析:(1)求椭圆的标准方程,可利用待定系数法,求出
的值即可,由已知
,得
,可得
,把
代入椭圆的方程,即可求出
的值,从而得椭圆的标准方程;(2)当
,且满足
时,求弦长
的取值范围,可利用弦长公式来求,设
,由
,得
,得
,由于同时含有
,可消元,由直线
:
与⊙
相切,可得
,这样由弦长公式得![]()
,可求出
的范围即可,由已知
,且满足
,由
,可得
,从而得
的范围,进而得弦长
的取值范围.
试题解析:(1)依题意,可知
,∴
,
解得![]()
∴椭圆的方程为
5分
(2)直线
:
与⊙
相切,
则
,即
, 6分
由
,得
,
∵直线
与椭圆交于不同的两点![]()
设
∴
,![]()
,
∴
.9分
∴
∴
,
∴![]()
.11分
设
,
则
,![]()
∵
在
上单调递增∴
13分
考点:椭圆的方程,直线与二次曲线的位置关系.
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,![]()
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,若
,且
.
(1)求动点
的轨迹
的方程;
(2)已知定点
,若斜率为
的直线
过点
并与轨迹
交于不同的两点
,且对于轨迹
上任意一点
,都存在
,使得
成立,试求出满足条件的实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=
.![]()
(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线C1:x2+by=b2经过椭圆C2:
+
=1(a>b>0)的两个焦点.![]()
(1)求椭圆C2的离心率;
(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.![]()
(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设动点P(x,y)(x≥0)到定点F
的距离比到y轴的距离大
.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F
作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com