精英家教网 > 高中数学 > 题目详情
14.△ABC中,角A、B、C所对的边分别是a、b、c,下列条件中能确定a=b的有①②④.(填序号)
①sinA=sinB      ②cosA=cosB     ③sin2A=sin2B    ④cos2A=cos2B.

分析 对于①由正弦定理sinA=sinB时,a=b,由②cosA=cosB,则A=B,由③sin2A=sin2B,则A=B或A+B=$\frac{π}{2}$,不能得到a=b,对于④,cos2A=cos2B,即2A=2B,则A=B,则a=b,求得①②④正确.

解答 解:由正弦定理可知:$\frac{a}{sinA}$=$\frac{b}{sinB}$=2R,
则当sinA=sinB时,a=b,故①正确;
由0<A<π,0<B<π,
由cosA=cosB,则A=B,则a=b,故②正确;
sin2A=sin2B,则A=B或A+B=$\frac{π}{2}$,
则不一定得到A=B,则不一定得到a=b,故③错误;
由0<A<π,0<B<π,
cos2A=cos2B,即2A=2B,则A=B,则a=b,故④正确;
故答案为:①②④

点评 本题考查正弦定理的应用,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-mx,x∈(0,+∞),m∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对于?x∈[1,+∞),f(x)≤-$\frac{m}{x}$恒成立,求实数m的取值范围;
(Ⅲ)若函数f(x)有两个零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x-2ax+b,且f(1)=$\frac{3}{2}$,f(2)=$\frac{15}{4}$.
(1)求a,b;
(2)判断f(x)的奇偶性;
(3)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知动点P在曲线2y2-x=0上移动,则点A(-2,0)与点P连线中点的轨迹方程是(  )
A.y=2x2B.y=8x2C.x=4y2-1D.y=4x2-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l过点A(-a,0),且与椭圆相交于另一点B;
(1)求椭圆的方程;
(2)若线段AB长为$\frac{{4\sqrt{2}}}{5}$,求直线l的倾斜角;
(3)点Q(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{QA}•\overrightarrow{QB}=4$,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\sqrt{x-1}$+log2${\;}^{(2-{x}^{2})}$,则f(x)的定义域为{x|1$≤x<\sqrt{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中A(3,2)、B(-1,5),C点在直线3x-y+3=0上,若S△ABC=10,求△ABC外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知曲线y=f(x)在x=5处的切线方程是y=-2x+8,则f(5)与f′(5)分别为(  )
A.3,3B.3,-1C.-1,3D.-2,-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A-EF-C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°

查看答案和解析>>

同步练习册答案