精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xoy中,曲线C的参数方程是(θ为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为:

(1)求曲线C的极坐标方程;

(2)设直线θ=与直线l交于点M,与曲线C交于P,Q两点,已知|OM||OP||OQ)=10,求t的值。

【答案】(1);(2).

【解析】

(1)由曲线C的参数方程,可得曲线C的普通方程,再将其化为极坐标方程

(2)将代入中,求得|OM|,代入中,得,得到|OP||OQ|=5.再根据|OM||OP||OQ|=10,解得t值即可.

(1)由曲线C的参数方程,可得曲线C的普通方程为

. ∵

故曲线C的极坐标方程为

(2)将代入中,得,则

∴ |OM|=.将代入中,得

设点P的极径为,点Q的极径为,则. 所以|OP||OQ|=5.又|OM||OP||OQ|=10,则5=10.∴ t=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调增区间;

2)若存在,使得是自然对数的底数),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列4个命题:

(1)有两个面互相平行,其余四个面都是全等的等腰梯形的六面体是正四棱台;

(2)底面是正三角形,其余各面都是等腰三角形的棱锥是正三棱锥;

(3)各侧面都是等腰三角形的四棱锥是正四棱锥;

(4)底面是正三角形,相邻两侧而所成的二面角都相等的三棱锥是正三棱锥

中,假命题的个数为( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为.

1)求椭圆的方程;

2)过点作两条互相垂直的弦分别与椭圆交于点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面

分别为线段上的点,且

(1)证明:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆C:的左右焦点分别为,直线l:与椭圆C交于A,B两点为坐标原点.

若直线l过点,且,求直线l的方程;

若以AB为直径的圆过点O,点P是线段AB上的点,满足,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥中,底面为菱形,,为正三角形.

(1)证明:

(2)若,四棱锥的体积为16,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Ox2y2=1和定点A(2,1),由圆O外一点P(ab)向圆O引切线PQ切点为Q,|PQ|=|PA|成立如图.

(1)ab间的关系

(2)|PQ|的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个回归方程,变量增加1个单位时,平均增加5个单位

③线性回归方程必过

④设具有相关关系的两个变量的相关系数为,那么越接近于0之间的线性相关程度越高;

⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。

其中错误的个数是(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案