精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定义在[-1,1]上的奇函数.
(1)求a,b的值;
(2)求f(x)的值域;
(3)若对任意t∈R,x∈[-1,1],不等式f(x)<3t2-λt+1恒成立,求λ的取值范围.

分析 (1)由题意可得f(0)=0,f(-1)+f(1)=0,解得a=2,b=1,注意检验;
(2)化简f(x)=-$\frac{1}{2}$+$\frac{1}{1+{2}^{x}}$,x∈[-1,1],运用指数函数的单调性,可得f(x)的值域;
(3)由题意可得3t2-λt+1>f(x)max=$\frac{1}{6}$,再由判别式小于0,解不等式即可得到所求范围.

解答 解:(1)由题意可得f(0)=0,
即有$\frac{b-1}{2+a}$=0,解得b=1;
又f(-1)+f(1)=0,即为
$\frac{1-\frac{1}{2}}{1+a}$+$\frac{1-2}{a+4}$=0,解得a=2.
即有f(x)=$\frac{1-{2}^{x}}{2(1+{2}^{x})}$,
f(-x)+f(x)=$\frac{1-{2}^{-x}}{2(1+{2}^{-x})}$+$\frac{1-{2}^{x}}{2(1+{2}^{x})}$=$\frac{{2}^{x}-1+1-{2}^{x}}{2(1+{2}^{x})}$=0,
故f(x)为奇函数,即有a=2,b=1;
(2)f(x)=$\frac{1-{2}^{x}}{2(1+{2}^{x})}$=-$\frac{1}{2}$+$\frac{1}{1+{2}^{x}}$,x∈[-1,1],
由y=2x在[-1,1]递增,可得f(x)在[-1,1]递减,
即有f(x)的值域为[f(1),f(-1)],
即为[-$\frac{1}{6}$,$\frac{1}{6}$];
(3)对任意t∈R,x∈[-1,1],不等式f(x)<3t2-λt+1恒成立,
即为3t2-λt+1>f(x)max=$\frac{1}{6}$,
即有△<0,即λ2-4×3×$\frac{5}{6}$<0,
解得-$\sqrt{10}$<λ<$\sqrt{10}$.
即有λ的取值范围为(-$\sqrt{10}$,$\sqrt{10}$).

点评 本题考查函数的奇偶性的运用和值域的求法,注意运用奇函数的性质和指数函数的单调性,考查不等式恒成立问题的解法,注意运用函数的最值和二次不等式恒成立的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.欧阳修《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为6cm的圆,中间有边长为3cm的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列四个命题:
①“直线a,b没有公共点”是“直线a,b为异面直线”的必要不充分条件;
②“直线a,b和平面α所成的角相等”是“直线a,b平行”的充分不必要条件;
③“直线l平行于两个相交平面α,β”是“直线l与平面α,β的交线平行”的充要条件;
④“直线l与平面α内无数条直线都垂直”是“直线l⊥平面α”的必要不充分条件.
其中,所有真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=x2-2x-3,x∈R的单调减区间为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下命题正确的是(  )
A.经过空间中的三点,有且只有一个平面
B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等
C.空间中,两条异面直线所成角的范围是(0,$\frac{π}{2}$]
D.如果直线l平行于平面α内的无数条直线,则直线l平等于平面α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{|x|}{x+2}$-ax2,a∈R.
(1)当a=2时,求函数f(x)的零点;
(2)当a>0时,判断函数f(x)在(0,+∞)内零点个数;
(3)若函数f(x)有四个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈[-2,0],使得f(x2)≤g(x1)成立,则实数a的取值范围是[-$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,A1A=1且A1B=A1D=$\sqrt{2}$.
(1)求证:A1A⊥平面ABCD;
(2)求该四棱柱的内切球体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(普通班)已知数列{an}满足a1=2,对于任意的n∈N+都有an>0,且(n+1)an2+anan+1-nan+12=0,又知数列{bn}:bn=2n-1+an-1.
(1)求数列{an}的通项an以及它的前n项和Sn
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案