精英家教网 > 高中数学 > 题目详情
15.给出下列四个命题:
①“直线a,b没有公共点”是“直线a,b为异面直线”的必要不充分条件;
②“直线a,b和平面α所成的角相等”是“直线a,b平行”的充分不必要条件;
③“直线l平行于两个相交平面α,β”是“直线l与平面α,β的交线平行”的充要条件;
④“直线l与平面α内无数条直线都垂直”是“直线l⊥平面α”的必要不充分条件.
其中,所有真命题的序号是①④.

分析 利用空间中线线、线面、面面间的位置关系求解.

解答 解:在①中:∵“直线a,b没有公共点”⇒“直线a,b为异面直线或平行线”,
“直线a,b为异面直线”⇒“直线a,b没有公共点”,
∴“直线a,b没有公共点”是“直线a,b为异面直线”的必要不充分条件,故①正确;
在②中,“直线a,b和平面α所成的角相等”⇒“直线a,b平行、相交或异面”,
“直线a,b平行”⇒“直线a,b和平面α所成的角相等”,
∴“直线a,b和平面α所成的角相等”是“直线a,b平行”的必要充分不条件,故②错误;
③“直线l平行于两个相交平面α,β”是“直线l与平面α,β的交线平行”的必要不充分条件,故③错误;
④“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α相交、平行或直线在平面内”,
“直线l⊥平面α”⇒“直线l与平面α内无数条直线都垂直”,
∴“直线l与平面α内无数条直线都垂直”是“直线l⊥平面α”的必要不充分条件,故④正确.
故答案为:①④.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.一次函数f(x)是R上的增函数,已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)单调递增,求实数m的取值范围;
(3)当x∈[-1,3]时,g(x)有最大值13,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义代数运算a?b=$\sqrt{1-\frac{1}{2}ab}$-ka-2,则当方程x?x=0有两个不同解时,实数k的取值范围是(  )
A.$(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$B.$[-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2}]$C.$[-\sqrt{2},-\frac{{\sqrt{6}}}{2}]∪[\frac{{\sqrt{6}}}{2},\sqrt{2}]$D.$[\frac{{\sqrt{6}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若某三棱锥的三视图如图所示,则该棱锥的体积为$\frac{\sqrt{3}}{3}$,表面积为3$+\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$y=\frac{{{2^x}-1}}{{{2^x}+1}}$的图象关于(  )
A.x轴对称B.y轴对称C.原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.给出下面两个命题,命题p:方程$\frac{{x}^{2}}{25-m}$+$\frac{{y}^{2}}{m-7}$=1表示焦点在x轴上的椭圆命题q:双曲线$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的离心率e∈(1,2)已知¬p∨¬q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面ABCD是矩形,侧面PAD是等腰三角形∠APD=90°,且平面PAD⊥平面ABCD
(Ⅰ)求证:PA⊥PC;
(Ⅱ)若AD=2,AB=4,求三棱锥P-ABD的体积;
(Ⅲ)在条件(Ⅱ)下,求四棱锥P-ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定义在[-1,1]上的奇函数.
(1)求a,b的值;
(2)求f(x)的值域;
(3)若对任意t∈R,x∈[-1,1],不等式f(x)<3t2-λt+1恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.东莞某商城欲在国庆期间对某新上市商品开展促销活动,经测算该商品的销售量a万件与促销费用x万元满足ax+20a=40x+755,已知a万件该商品的进价成本为100+30a万元,商品的销售价定为50+$\frac{300}{a}$元/件.
(1)将该商品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?

查看答案和解析>>

同步练习册答案