精英家教网 > 高中数学 > 题目详情
10.函数$y=\frac{{{2^x}-1}}{{{2^x}+1}}$的图象关于(  )
A.x轴对称B.y轴对称C.原点对称D.直线y=x对称

分析 根据定义判断出f(x)为奇函数,根据奇函数的性质即可得到答案.

解答 解:f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-$\frac{{2}^{x}-1}{{2}^{x}+1}$=-f(x),
∴f(x)为奇函数,
∴函数$y=\frac{{{2^x}-1}}{{{2^x}+1}}$的图象关于原点对称,
故选:C.

点评 本题考查了函数的奇偶性和以及奇偶性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.等差数列{an}的前n项和为Sn,若S5=32,则a3=(  )
A.$\frac{32}{5}$B.2C.$4\sqrt{2}$D.$\frac{5}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}满足b3=3,b5=9.
(1)分别求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{b}_{n+2}}{{a}_{n+2}}$(n∈N*),求{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.空间四点A、B、C、D满足|$\overline{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值为(  )
A.只有一个B.有二个C.有四个D.有无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{|cos(x-\frac{π}{2})|}{x}$-k在(0,+∞)上有两个不同的零点a,b(a<b),则下面结论正确的是(  )
A.sina=acosbB.sinb=-bsinaC.cosa=bsinbD.sina=-acosb

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列四个命题:
①“直线a,b没有公共点”是“直线a,b为异面直线”的必要不充分条件;
②“直线a,b和平面α所成的角相等”是“直线a,b平行”的充分不必要条件;
③“直线l平行于两个相交平面α,β”是“直线l与平面α,β的交线平行”的充要条件;
④“直线l与平面α内无数条直线都垂直”是“直线l⊥平面α”的必要不充分条件.
其中,所有真命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),或f(x)=$\sqrt{2}$sin(2x-$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下命题正确的是(  )
A.经过空间中的三点,有且只有一个平面
B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等
C.空间中,两条异面直线所成角的范围是(0,$\frac{π}{2}$]
D.如果直线l平行于平面α内的无数条直线,则直线l平等于平面α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)sin(-1200°)cos 1290°+cos(-1020°)•sin(-1050°)
(2)log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}$.

查看答案和解析>>

同步练习册答案