分析 (1)利用递推关系、等比数列与等差数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)由an+1=2Sn+1,①
得an=2Sn-1+1(n≥2),②
①-②得an+1-an=2(Sn-Sn-1)=2an,
∴an+1=3an,即$\frac{an+1}{an}$=3,又当n=1时,$\frac{a2}{a1}$=3也符合上式,
∴an=3n-1.
由数列{bn}为等差数列,b3=3,b5=9,设{bn}公差为d,
∴b5-b3=9-3=2d,∴d=3,∴bn=3n-6.
(2)由(1)知:an+2=3n+1,bn+2=3n,
∴cn=$\frac{{b}_{n+2}}{{a}_{n+2}}$=$\frac{3n}{{3}^{n+1}}$=$\frac{n}{{3}^{n}}$.
∴{cn}的前n项和为Tn=$\frac{1}{3}+\frac{2}{{3}^{2}}$+…+$\frac{n}{{3}^{n}}$,
∴$\frac{1}{3}{T}_{n}$=$\frac{1}{{3}^{2}}$+$\frac{2}{{3}^{2}}$+…+$\frac{n-1}{{3}^{n}}$+$\frac{n}{{3}^{n+1}}$,
∴$\frac{2}{3}{T}_{n}$=$\frac{1}{3}+\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$-$\frac{n}{{3}^{n+1}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n+1}}$=$\frac{1}{2}-\frac{3+2n}{2×{3}^{n+1}}$,
∴Tn=$\frac{3}{4}$-$\frac{3+2n}{4×{3}^{n}}$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<3} | B. | {x|0≤x≤2} | C. | {0,1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 000名学生是总体 | B. | 每个学生是个体 | ||
| C. | 1 000名学生的成绩是一个个体 | D. | 样本的容量是100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$ | B. | $[-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2}]$ | C. | $[-\sqrt{2},-\frac{{\sqrt{6}}}{2}]∪[\frac{{\sqrt{6}}}{2},\sqrt{2}]$ | D. | $[\frac{{\sqrt{6}}}{2},\sqrt{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+4$\sqrt{2}$ | B. | 4+4$\sqrt{3}$ | C. | 6+2$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x轴对称 | B. | y轴对称 | C. | 原点对称 | D. | 直线y=x对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com