| A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
分析 利用诱导公式求得cosα的值,利用同角三角函数的基本关系求得sinα和tanα 的值,再利用二倍角的正切公式求得tan2α的值
解答 解:∵$cos(π-α)=\frac{4}{5}$=-cosα,∴cosα=-$\frac{4}{5}$,∵α为第三象限角,∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{3}{5}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{3}{4}$,
则tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{24}{7}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系,二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a${\;}^{\frac{2}{3}}$ | B. | $\sqrt{{a}^{3}}$ | C. | $\frac{1}{\sqrt{{a}^{3}}}$ | D. | $\frac{1}{\root{3}{{a}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18π | B. | 36π | C. | 54π | D. | 72π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ab≥1 | B. | $\sqrt{a}$+$\sqrt{b}$>2 | C. | a3+b3≥3 | D. | $\frac{1}{a}$+$\frac{1}{b}$≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com