精英家教网 > 高中数学 > 题目详情
14.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点到渐近线的距离等于焦距的$\frac{{\sqrt{3}}}{4}$倍,则双曲线的离心率为2,如果双曲线上存在一点P到双曲线的左右焦点的距离之差为4,则双曲线的虚轴长为$4\sqrt{3}$.

分析 根据右焦点到渐近线的距离等于焦距的$\frac{{\sqrt{3}}}{4}$倍,得到c=2a,根据P到双曲线的左右焦点的距离之差为4,得到2a=4,然后进行求解即可.

解答 解:∵右焦点到渐近线的距离为b,若右焦点到渐近线的距离等于焦距的$\frac{{\sqrt{3}}}{4}$倍,
∴b=$\frac{{\sqrt{3}}}{4}$•2c=$\frac{\sqrt{3}}{2}$c,
平方得b2=$\frac{3}{4}$c2=c2-a2
即a2=$\frac{1}{4}$c2
则c=2a,则离心率e=$\frac{c}{a}=2$,
∵双曲线上存在一点P到双曲线的左右焦点的距离之差为4,
∴2a=4,则a=2,
从而$b=\sqrt{16-4}=2\sqrt{3}$.
故答案为:2,$4\sqrt{3}$

点评 本题主要考查双曲线的离心率以及虚轴的计算,根据条件建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c分别是△ABC的角A,B,C的对边,且b=2,a=1,sin$\frac{C}{2}=\frac{{\sqrt{2}}}{4}$.
(1)求c;
(2)求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}为等差数列,若an=a,an=b(n-m≥1,m,n∈N*),则am+n=$\frac{nb-ma}{n-m}$.
(1)类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),猜想数列{bm+n}的通项公式;
(2)证明(1)中的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.($\frac{1}{{\sqrt{x}}}$+x)2n(n∈N*)的展开式中,只有第5项的系数最大,则其x2项的系数为70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中的任意一项都为正实数,且对任意m,n∈N*,有am•an=am+n,如果a10=32,则a1的值为(  )
A.-2B.2C.$\sqrt{2}$D.$-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)∈R,g(x)∈R,有以下命题:
①若f[f(x)]=f(x),则f(x)=x; 
②若f[f(x)]=x,则f(x)=x;
③若f[g(x)]=x,且g(x)=g(y),则x=y;
④若存在实数x,使得f[g(x)]=x有解,则存在实数x,使得g[f(x)]=x2+x+1.
其中是真命题的序号是(写出所有满足条件的命题序号)(  )
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a为实数,若复数z=a2-3a-4+(a-4)i为纯虚数,则复数a-ai在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,AB=4,BE=1.
(1)证明:平面ADE⊥平面ACD;
(2)若∠ABC=30°,求点B到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$cos(π-α)=\frac{4}{5}$,且α为第三象限角,则tan2α的值等于(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{24}{7}$D.-$\frac{24}{7}$

查看答案和解析>>

同步练习册答案