精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中的任意一项都为正实数,且对任意m,n∈N*,有am•an=am+n,如果a10=32,则a1的值为(  )
A.-2B.2C.$\sqrt{2}$D.$-\sqrt{2}$

分析 令m=1,得$\frac{{{a_{n+1}}}}{a_n}={a_1}$,从而${a_n}=a_1^n$,由此能求出a1的值.

解答 解:∵数列{an}中的任意一项都为正实数,且对任意m,n∈N*,有am•an=am+n
∴令m=1,则$\frac{{{a_{n+1}}}}{a_n}={a_1}$,
∴数列{an}是以a1为首项,公比为a1的等比数列,
∴${a_n}=a_1^n$,
∵a10=512,∴${a_1}=\sqrt{2}$.
故选:C.

点评 本题考查数列的首项的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{4},x∈[0,\frac{1}{2}]}\\{\frac{x}{x+2},x∈(\frac{1}{2},1]}\end{array}}$,g(x)=acos$\frac{πx}{2}$+5-2a(a>0)若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[$\frac{7}{3}$,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知不等式组$\left\{\begin{array}{l}3x+4y-10≥0\\ x≤4\\ y≤3\end{array}\right.$,表示区域D,过区域D中任意一点P作圆x2+y2=1的两条切线且切点分别为A,B,当∠PAB最大时,cos∠PAB=(  )
A.$\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是(  )
A.x-y=0B.x+y=0C.x-y-2=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一次测验共有4个选择题和2个填空题,每答对一个选择题得20分,每答对一个填空题得10分,答错或不答得0分,若某同学答对每个选择题的概率均为$\frac{2}{3}$,答对每个填空题的概率均为$\frac{1}{2}$,且每个题答对与否互不影响.
(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点到渐近线的距离等于焦距的$\frac{{\sqrt{3}}}{4}$倍,则双曲线的离心率为2,如果双曲线上存在一点P到双曲线的左右焦点的距离之差为4,则双曲线的虚轴长为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线C:x2=3y上两点A,B的横坐标恰是方程x2+5x+1=0的两个实根,则直线AB的方程是y=-$\frac{5}{3}$x-$\frac{1}{3}$,弦AB中点到抛物线C的准线距离为$\frac{55}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图“月亮图”是由曲线C1与C2构成,曲线C1是以原点O为中心,F1(-1,0),F2(1,0)为焦点的椭圆的一部分,曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A($\frac{3}{2}$,$\sqrt{6}$)是两条曲线的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1,C2依次交于B,C,D,E四点,若G为CD的中点、H为BE的中点,问:$\frac{|BE|•|G{F}_{2}|}{|CD|•|H{F}_{2}|}$是否为定值?若是求出该定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,再将所得函数图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,求g(x)在$[{0,\frac{π}{2}}]$的单调递增区间.

查看答案和解析>>

同步练习册答案