精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)∈R,g(x)∈R,有以下命题:
①若f[f(x)]=f(x),则f(x)=x; 
②若f[f(x)]=x,则f(x)=x;
③若f[g(x)]=x,且g(x)=g(y),则x=y;
④若存在实数x,使得f[g(x)]=x有解,则存在实数x,使得g[f(x)]=x2+x+1.
其中是真命题的序号是(写出所有满足条件的命题序号)(  )
A.①②B.②③C.③④D.

分析 根据条件分别利用特殊值法和排除法进行判断即可.

解答 解:①若f[f(x)]=f(x),当f(x)为常数时,也满足条件,故f(x)=x不一定成立,故①错误;
 ②若f(x)=-x,则f[f(x)]=f(-x)=-(-x)=x成立,满足条件.但f(x)=x不成立,故②错误;
③若f[g(x)]=x,且g(x)=g(y),则f[g(y)]=x且f[g(y)]=y,∴x=y,正确;
④令f(x)=x,g(x)=x,f(g(x))=x有解,但g(f(x))=x=x2十x十1无解,∴错误
故选:D.

点评 本题主要考查命题的真假判断,涉及抽象函数的关系,利用特殊值法和排除法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和为Sn,对于任意的n∈N+都有a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+…+a${\;}_{n}^{3}$=S${\;}_{n}^{2}$.
(1)求证:对于任意的n∈N+都有an+12-an+1=2Sn
(2)求数列{an}的通项公式;
(3)已知数列{bn}中,b1=2,bn+1=bn+$\frac{(n-1){2}^{n-1}}{{S}_{n}}$,设cn=3+5an,把数列{cn}与数列{nbn}的公共项由小到大的顺序组成一个新的数列{c${\;}_{{k}_{n}}$},求数列{kn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若A(a,b),B(c,d)是f(x)=lnx图象上不同两点,则下列各点一定在f(x)图象上的是(  )
A.(a+c,b+d)B.(a+c,bd)C.(ac,b+d)D.(ac,bd)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知cosα=$\frac{2}{5}$,α∈($\frac{3π}{2}$,2π),求cos2α,cos$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点到渐近线的距离等于焦距的$\frac{{\sqrt{3}}}{4}$倍,则双曲线的离心率为2,如果双曲线上存在一点P到双曲线的左右焦点的距离之差为4,则双曲线的虚轴长为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不等式mx2-2x≥1无解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数z=$\frac{1+ai}{i}$(a∈R)的虚部为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若a,b,c是不全相等的正数,求证:ln$\frac{a+b}{2}$+ln$\frac{b+c}{2}$+ln$\frac{c+a}{2}$>lna+lnb+lnc.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,函数f(x)=ax+lnx,g(x)=$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$(e为自然对数的底数).
(1)若a=-e2,求函数f(x)的极值;
(2)若a=-1,求证:当x>0时,f(x)>g(x)-x恒成立.

查看答案和解析>>

同步练习册答案