精英家教网 > 高中数学 > 题目详情
7.已知cosα=$\frac{2}{5}$,α∈($\frac{3π}{2}$,2π),求cos2α,cos$\frac{α}{2}$的值.

分析 由三角函数中两角和的余弦公式,以及角的取值范围得到答案.

解答 解:∵cosα=$\frac{2}{5}$,α∈($\frac{3π}{2}$,2π),
∴2α∈(3π,4π),$\frac{α}{2}$∈($\frac{3π}{4}$,π),
∴cos2α=2cos2α-1=-$\frac{17}{25}$,
∵cosα=2cos2$\frac{α}{2}$-1,$\frac{α}{2}$∈($\frac{3π}{4}$,π)
∴cos$\frac{α}{2}$=-$\sqrt{1+cosα}$
∴cos$\frac{α}{2}$=-$\frac{\sqrt{70}}{10}$

点评 本题考查三角函数两角和的余弦公式,以及角的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C所对的边分别为a,b,c,已知2c-a=$\frac{bcosA}{cosB}$,b=$\sqrt{3}$
(1)求角B;
(2)求c+2a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l1:x+2y=a+2和直线l2:2x-y=2a-1分别与圆(x-a)2+(y-1)2=16相交于A,B和C,D,则四边形ABCD的内切圆的面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|$\frac{1}{x}$>1},N={x|x2+2x-3<0},则M∪N=(  )
A.(-∞,-3)B.(-∞,1)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.($\frac{1}{{\sqrt{x}}}$+x)2n(n∈N*)的展开式中,只有第5项的系数最大,则其x2项的系数为70.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=(x-a)|x-a|+b,a,b∈R,则下列叙述中,正确的序号是(  )
①对任意实数a,b,函数y=f(x)在R上是单调函数;
②对任意实数a,b,函数y=f(x)在R上都不是单调函数;
③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;
④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.
A.①③B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)∈R,g(x)∈R,有以下命题:
①若f[f(x)]=f(x),则f(x)=x; 
②若f[f(x)]=x,则f(x)=x;
③若f[g(x)]=x,且g(x)=g(y),则x=y;
④若存在实数x,使得f[g(x)]=x有解,则存在实数x,使得g[f(x)]=x2+x+1.
其中是真命题的序号是(写出所有满足条件的命题序号)(  )
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系xOy中,以x的非负半轴为始边作两个锐角α,β,它们的终边分别与单位圆交于点A,B,已知A的横坐标为$\frac{\sqrt{5}}{5}$,B的纵坐标为$\frac{\sqrt{2}}{10}$,则2α+β=(  )
A.πB.$\frac{2}{3}$πC.$\frac{5}{6}$πD.$\frac{3}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等比数列{an}中,a3=4,a6=32.
(1)求an
(2)设bn=log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案