精英家教网 > 高中数学 > 题目详情

【题目】对于任意x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为

【答案】58
【解析】解:当时,y=0+0+0=0,
时,y=0+0+1=1,
时,y=0+1+2=3,
, y=0+1+3=4,
时,y=1+2+4=7,
时,y=1+2+5=8,
时,y=1+3+6=10,
时,y=1+3+7=11,
当x=1时,y=2+4+8=12.
所以A中所有元素的和为:1+3+4+7+8+10+11+14=58.
所以答案是:58.
【考点精析】本题主要考查了集合的表示方法-特定字母法和函数的值的相关知识点,需要掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答
(1)设复数z满足|z|=1,且(3+4i)z为纯虚数,求
(2)已知(2 n的展开式中所有二项式系数之和为64,求展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于x∈R,[x]表示不超过x的最整数,如[1.1]=1,[﹣2.1]=﹣3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },则A中所有元素的和为(
A.15
B.19
C.20
D.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=4,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,已知侧棱底面的中点, .

(1)证明: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求值: . (2)求函数f(x)=的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在 轴上的圆 过点 ,圆 的方程为
(1)求圆 的方程;
(2)由圆 上的动点 向圆 作两条切线分别交 轴于 两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案