精英家教网 > 高中数学 > 题目详情

已知函数满足 在上恒成立.
(1)求的值;
(2)若,解不等式
(3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.

(1);(2)当,当;(3)当时,上有最小值-5.

解析试题分析:本题考查计算能力和分类讨论的数学思想.(1)求函数的导数,由二次函数知识求恒成立问题;(2)求导,化为时,对b的值分类讨论,分别求解;(3)对函数求导后,其导函数是一个二次函数,根据对轴称与区间的关系来分类讨论.
试题解析:(1)

恒成立;
恒成立;
显然时,上式不能恒成立;
,由于对一切则有:
,即,解得:
.
(2)  
得:
,即 ;
∴当

.
(3)假设存在实数使函数在区间 上有最小值-5.
图象开口向上且对称轴为
①当,此时函数在区间上是递增的;

解得矛盾
②当,此时函数在区间上是递减的,而在区间上是递增的,

解得
.
③当,此时函数在区间上递减的;
,即
解得,满足
综上知:当时,上有最小值-5.
考点:1、函数的导数及其应用;2、二次函数的图象及其性质;3、分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

同步练习册答案