精英家教网 > 高中数学 > 题目详情

已知函数f(x)=cos(2x+)+sin2x

(1)求函数f(x)的单调递减区间及最小正周期;

(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=求b.

 

【答案】

(1)最小正周期T==π,f(x)的单调递减区间是[kπ-,kπ+](k∈Z).

(2) b=.

【解析】

试题分析:(1)∵f(x)=cos(2x+)+sin2x=cos2xcos-sin2xsin+

∴最小正周期T==π,令2kπ-≤2x≤2kπ+(k∈Z),得kπ-≤x≤kπ+,k∈Z,

∴f(x)的单调递减区间是[kπ-,kπ+](k∈Z).

(2)由(1)得f(x)=-sin2x+

故b=.

考点:本题主要考查三角函数的和差倍半公式,正弦定理的应用,三角函数的图象和性质。

点评:中档题,近些年,涉及三角函数、三角形的题目常常出现在高考题中,往往需要综合应用三角公式化简函数,以进一步研究函数的性质。应用正弦定理、余弦定理求边长、角等,有时运用函数方程思想,问题的解决较为方便。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案