精英家教网 > 高中数学 > 题目详情

轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m.

(1)求助跑道所在的抛物线方程;

(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.

(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)

 

 

(1)f(x)=x2-4x+4,x∈[0,3]

(2)2 m到3 m之间

【解析】【解析】
(1)设助跑道所在的抛物线方程为

f(x)=a0x2+b0x+c0,

依题意

解得 a0=1,b0=-4,c0=4,

所以助跑道所在的抛物线方程为f(x)=x2-4x+4,x∈[0,3].

(2)设飞行轨迹所在抛物线为g(x)=ax2+bx+c(a<0),

依题意

,解得

所以g(x)=ax2+(2-6a)x+9a-5

=a2+1-.

令g(x)=1,得2=.

因为a<0,所以x==3-.

当x=时,g(x)有最大值,为 1-

则运动员的飞行距离

d=3--3=-

飞行过程中距离平台最大高度

h=1--1=-

依题意,4≤-≤6,即2≤-≤3,

即飞行过程中距离平台最大高度的取值范围为在2 m到3 m之间.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届高考苏教数学(理)训练6 函数的奇偶性及周期性(解析版) 题型:填空题

x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]的最小正周期是________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练18 同角三角函数的基本关系与诱导公式(解析版) 题型:解答题

如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交于点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.

(1)用β表示α;

(2)如果 sin β=,求点B(xB,yB)坐标;

(3)求xB-yB的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练17 任意角和弧度制及任意角的三角函数(解析版) 题型:填空题

如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练16 导数与函数的综合问题(解析版) 题型:解答题

已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.

(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;

(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;

(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练16 导数与函数的综合问题(解析版) 题型:填空题

已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax,当x∈(-2,0)时,f(x)的最小值为1,则a的值等于________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练15 导数与函数极值、最值(解析版) 题型:填空题

已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图像在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练13 变化率与导数、导数的计算(解析版) 题型:解答题

已知函数f(x)=x2-(1+2a)x+aln x(a为常数).

(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;

(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

 

查看答案和解析>>

科目:高中数学 来源:2015届高考苏教数学(理)训练1 集合(解析版) 题型:填空题

集合A={-1,0,1},B={y|y=ex,x∈A},则A∩B=________.

 

查看答案和解析>>

同步练习册答案