精英家教网 > 高中数学 > 题目详情
已知长方体ABCD-A1B1C1D1中,A1A=AB,E、F分别是BD1和AD中点.
(1)求异面直线CD1、EF所成的角;
(2)证明EF是异面直线AD和BD1的公垂线.
(1)∵在平行四边形BAD1C1中,
E也是AC1的中点,∴EFC1D,(2分)
∴两相交直线D1C与CD1所成的角即异面直线CD1与EF所成的角.(4分)
又A1A=AB,长方体的侧面ABB1A1
CDD1C1都是正方形,∴D1C⊥CD1
∴异面直线CD1、EF所成的角为90°.(7分)

(2)证:设AB=AA1=a,∵D1F=
a2+
AD2
4
=BF

∴EF⊥BD1.(9分)
由平行四边形BAD1C1,知E也是AC1的中点,
且点E是长方体ABCD-A1B1C1D1的对称中心,(12分)
∴EA=ED,∴EF⊥AD,又EF⊥BD1
∴EF是异面直线BD1与AD的公垂线.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,点E、F分别在AC,AD上,使平面BEF⊥平面ACD,且EF∥CD,则平面BEF与平面BCD所成的二面角的正弦值为                  ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1棱长为2,E是棱A1B1的中点.
(1)求异面直线A1B1与BD的距离;
(2)求直线EC1与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知AA1与BB1是异面直线,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,则AA1与BB1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O面AB1D1
(2)求异面直线AD1与C1O所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点
(1)证明:AD⊥D1F;
(2)求AE与D1F所成的角;
(3)证明:面AED⊥面A1FD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体A-BCD中,异面直线AB与CD所成角为(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,异面直线AD与BD1所成角的余弦值为(  )
A.
3
3
B.
6
3
C.
2
2
D.
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱B1C1,AD的中点,则直线MN与底面ABCD所成角的大小是______.

查看答案和解析>>

同步练习册答案