精英家教网 > 高中数学 > 题目详情
正四面体A-BCD中,异面直线AB与CD所成角为(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2
如下图所示,在正四面体A-BCD中,AD=AC,BC=BD,

取CD的中点E,连接AE,BE,则
AE⊥CD,BE⊥CD,又由AE∩BE=E
∴CD⊥平面ABE
又∵AB?ABE
∴AB⊥CD
故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E为C1C的中点,则异面直线D1A与EO所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过正方体ABCD-A1B1C1D1的顶点A作直线L,使L与棱AB,AD,AA1所成的角都相等,这样的直线L可以作(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方体ABCD-A1B1C1D1中,A1A=AB,E、F分别是BD1和AD中点.
(1)求异面直线CD1、EF所成的角;
(2)证明EF是异面直线AD和BD1的公垂线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AC=BC=1,AA1=2,∠ACB=90°,M是A1B1的中点.
(1)求证:C1M⊥平面ABB1A1
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直三棱柱ABC-A1B1C1,AC⊥BC,且CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为(  )
A.
5
5
B.
5
3
C.
2
5
5
D.
3
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:四面体A-BCD被一平面所截,截面EFHG是一个矩形,
(1)求证:ABFH;
(2)求异面直线AB、CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在长方体ABCD-A1B1C1D1中,AB=a,AD=b,AC1=c,点M为AB的中点,点N为BC的中点.
(1)求长方体ABCD-A1B1C1D1的体积;
(2)若a=4,b=2,c=
21
,求异面直线A1M与B1N所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1平面CDB1
(Ⅲ)若BB1=4,求CB1与平面AA1B1B所成角的正切值.

查看答案和解析>>

同步练习册答案