精英家教网 > 高中数学 > 题目详情
16.已知$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象的一部分如图所示.
(1)求f(x)解析式;
(2)当$x∈[-6,-\frac{2}{3}]$时,求y=f(x)+f(x+2)的最大、最小值及相应的x值.

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
(2)利用三角恒等变换化简y=f(x)+f(x+2)的解析式,再利用余弦函数的最值,

解答 解:(1)根据已知$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象的一部分,可得A=2,$\frac{T}{2}=4$,∴T=8,$ω=\frac{2π}{T}=\frac{π}{4}$.
把点(1,2)代入函数的解析式,求得sin($\frac{π}{4}$+φ)=1,可得$ϕ=\frac{π}{4}$,即$f(x)=2sin(\frac{π}{4}x+\frac{π}{4})$.
(2)由(1)可得$f(x+2)=2sin[\frac{π}{4}(x+2)+\frac{π}{4}]$=$2cos(\frac{π}{4}x+\frac{π}{4})$,
∴y=f(x)+f(x+2)=2sin($\frac{π}{4}$x+$\frac{π}{4}$)+2cos($\frac{π}{4}$x+$\frac{π}{4}$)=$2\sqrt{2}sin(\frac{π}{4}x+\frac{π}{4}+\frac{π}{4})$=$2\sqrt{2}sin(\frac{π}{4}x+\frac{π}{2})=2\sqrt{2}cos(\frac{π}{4}x)$,
∵$-6≤x≤-\frac{2}{3}$,∴$-\frac{3π}{2}≤\frac{π}{4}x≤-\frac{π}{6}$,∴①$\frac{π}{4}x=-π$时,即 x=-4时,${y_{min}}=-2\sqrt{2}$;
②$\frac{π}{4}x=-\frac{π}{6}$,即$x=-\frac{2}{3}$时,${y_{max}}=\sqrt{6}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值;还考查了三角恒等变换,余弦函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知等差数列{an}中,a2=2,d=2,则S10=(  )
A.200B.100C.90D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若M为△ABC所在平面内的一点,且满足4$\overrightarrow{AM}$=2$\overrightarrow{AB}$+3$\overrightarrow{AC}$,直线BC与AM交于点D,则$\frac{|\overrightarrow{BD}|}{|\overrightarrow{BC}|}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在两个分类变量的独立性检验过程中有如下表格:
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
k00.4550.7081.3232.0722.7063.8415.0246.6357.879
已知两个分类变量X和Y,如果在犯错误的概率不超过0.05的前提下认为X和Y有关系,则随机变量K2的观测值可以位于的区间是(  )
A.(0.05,0.10)B.(0.025,0.05)C.(2.706,3.841)D.(3.841,5.024)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$|\overrightarrow a|=|\overrightarrow b|$C.$\overrightarrow a∥\overrightarrow b$D.$|\overrightarrow a|>|\overrightarrow b|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若3x=9,则x3=(  )
A.27B.24C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|ax-x2|+2b(a,b∈R).
(1)当b=0时,若不等式f(x)≤2x在x∈[0,2]上恒成立,求实数a的取值范围;
(2)已知a为常数,且函数f(x)在区间[0,2]上存在零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Sn为数列{an}的前n项和,且an=$\left\{\begin{array}{l}{2{a}_{n-1},n≥6}\\{{a}_{n-1}+1,2≤n<6}\end{array}\right.$,a1=a(a∈R)给出下列3个结论:①数列{an+5}一定是等比数列;②若S5<100,则a<18;③若a3,a6,a9成等比数列,则a=-$\frac{4}{3}$.其中,所有正确结论的序号为(  )
A.B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程l n x=$\frac{2}{x}$必有一个根所在的区间是(  )
A.(1,2)B.(2,3)C.(e,3)D.(e,+∞)

查看答案和解析>>

同步练习册答案