精英家教网 > 高中数学 > 题目详情
1.若3x=9,则x3=(  )
A.27B.24C.9D.8

分析 由3x=9,得x=2,由此能求出x3

解答 解:∵3x=9,∴x=2,
∴x3=23=8.
故选:D.

点评 本题考查有理数指数幂化简求值,考查指数函数的性质、运算法则等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.己知随机变量X~B(4,0.5),若Y=2X+1,则D(Y)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从区间[0,2]随机抽取2m个数x1,x2,…,xm,y1,y2,…,ym,构成m个数对(x1,y1),(x2,y2),…,(xm,ym),其中两数的平方和小于4的数对共有n个,则用随机模拟的方法得到的圆周率π的近似值为(  )
A.$\frac{4n}{m}$B.$\frac{2n}{m}$C.$\frac{4m}{n}$D.$\frac{2m}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=sin405°,b=cos(-52°),c=tan47°,则a、b、c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象的一部分如图所示.
(1)求f(x)解析式;
(2)当$x∈[-6,-\frac{2}{3}]$时,求y=f(x)+f(x+2)的最大、最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4$,且 $\overrightarrow a$与$\overrightarrow b$的夹角为30°,求
(1)$\overrightarrow a•\overrightarrow b$
(2)${(\overrightarrow a-\overrightarrow b)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.是否存在常数a,b,c使得$1×{2^2}+2×{3^2}+…+n{(n+1)^2}=\frac{{n(n+1)(a{n^2}+bn+c)}}{12}$对一切n∈N*均成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,AB=AC=2$\sqrt{3}$,∠BAC=120°,点M,N在线段BC上.
(1)若AM=$\sqrt{7}$,求BM的长;
(2)若MN=1,求$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求函数f(x)=x3+x+1的图象在点(1,f(1))处的切线方程4x-y-1=0.

查看答案和解析>>

同步练习册答案