精英家教网 > 高中数学 > 题目详情
10.在△ABC中,AB=AC=2$\sqrt{3}$,∠BAC=120°,点M,N在线段BC上.
(1)若AM=$\sqrt{7}$,求BM的长;
(2)若MN=1,求$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围.

分析 (1)在△ABM中,利用余弦定理计算BM;
(2)以BC的中点为原点建立坐标系,设M(t,0),N(t+1,0),用t表示出$\overrightarrow{AM}•\overrightarrow{AN}$的函数,利用t的范围和二次函数的性质得出答案.

解答 解:(1)在△ABM中,由余弦定理得:
AM2=BM2+AB2-$\sqrt{3}$AB•BM,
即7=BM2+12-$\sqrt{3}•2\sqrt{3}•BM$,解得:BM=1或BM=5.
(2)取BC得中点O,连接AO,
以BC,OA为x轴,y轴建立平面直角坐标系,
则A(0,$\sqrt{3}$),B(-3,0),C(3,0),
设M(t,0),N(t+1,0),则$\overrightarrow{AM}$=(t,-$\sqrt{3}$),$\overrightarrow{AN}$=(t+1,-$\sqrt{3}$),
∴$\overrightarrow{AM}•\overrightarrow{AN}$=t2+t+3=(t+$\frac{1}{2}$)2+$\frac{11}{4}$(-3≤t≤2),
∴当t=-$\frac{1}{2}$时,$\overrightarrow{AM}•\overrightarrow{AN}$取得最小值$\frac{11}{4}$,当t=2时,$\overrightarrow{AM}•\overrightarrow{AN}$取得最大值9.
∴$\overrightarrow{AM}•\overrightarrow{AN}$的取值范围是[$\frac{11}{4}$,9].

点评 本题考查了平面向量的数量积运算,解三角形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若3x=9,则x3=(  )
A.27B.24C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知Sn为数列{an}的前n项和,且an=$\left\{\begin{array}{l}{2{a}_{n-1},n≥6}\\{{a}_{n-1}+1,2≤n<6}\end{array}\right.$,a1=a(a∈R)给出下列3个结论:①数列{an+5}一定是等比数列;②若S5<100,则a<18;③若a3,a6,a9成等比数列,则a=-$\frac{4}{3}$.其中,所有正确结论的序号为(  )
A.B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若$f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)若将y=f(x)图象上所有点沿着$\overrightarrow a=(-θ,0)(θ>0)$方向移动得到y=g(x)的图象,若y=g(x)图象的一个对称轴为$x=\frac{5}{6}π$,求θ的最小值;
(3)在第(2)问的前提下,求出函数y=g(x)在$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程$\widehaty=5-3x$,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程$\widehaty=bx+a$必经过点$(\overline x,\overline y)$;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a-1}{x}-2a,g(x)=-ax-1$,a>0.
(1)设h(x)=f(x)-g(x),若函数h(x)在$({0,\frac{1}{2}})$上是减函数,求实数a的取值范围;
(2)若f(x)≥g(x)+lnx在[1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.1 624与899的最大公约数是29.

查看答案和解析>>

同步练习册答案