精英家教网 > 高中数学 > 题目详情
18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).

分析 (1)根据表中数据作出散点图,并判断y与x之间的相关关系;
(2)计算平均数与回归系数,写出回归直线方程;
(3)利用回归直线方程计算x=10时y的值即可.

解答 解:(1)作出散点图如图所示;
---------------(3分)
销售额y与广告费用支出x之间是正相关;
(2)计算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline y=\frac{1}{5}×(30+40+60+50+70)=50$,
$\sum{{x_i}^2={2^2}+{4^2}+{5^2}}+{6^2}+{8^2}=145$,
$\sum{{y_i}^2}={30^2}+{40^2}+{60^2}+{50^2}+{70^2}=13500$,
$\sum{{x_i}{y_i}=1380}$,
$\widehatb=\frac{{\sum{{x_i}{y_i}-5\overline x\overline y}}}{{\sum{{x_i}^2-5{{\overline x}^2}}}}=\frac{1380-5×5×50}{{145-5×{5^2}}}=6.5$,
$\widehata=\overline y-b\overline x=50-6.5×5=17.5$.
因此回归直线方程为$\widehaty=6.5x+17.5$;-----------------(10分)
(3)当x=10时,计算y=10×6.5+17.5=82.5;
估计广告费用为10时,销售收入为82.5.----------------(12分)

点评 本题考查了散点图与回归直线方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,将△CBD沿BD翻折到△EBD的位置.
(1)求证:直线BD⊥平面ACE;
(2)若二面角E-BD-C的大小为60°,∠DBE=60°,求直线CE与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=sin405°,b=cos(-52°),c=tan47°,则a、b、c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4$,且 $\overrightarrow a$与$\overrightarrow b$的夹角为30°,求
(1)$\overrightarrow a•\overrightarrow b$
(2)${(\overrightarrow a-\overrightarrow b)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.是否存在常数a,b,c使得$1×{2^2}+2×{3^2}+…+n{(n+1)^2}=\frac{{n(n+1)(a{n^2}+bn+c)}}{12}$对一切n∈N*均成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,BC=2,B=60°,若△ABC的面积等于$\frac{\sqrt{3}}{2}$,则AC边长为(  )
A.$\sqrt{3}$B.2C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,AB=AC=2$\sqrt{3}$,∠BAC=120°,点M,N在线段BC上.
(1)若AM=$\sqrt{7}$,求BM的长;
(2)若MN=1,求$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=mx2+4x+1,且满足f(-1)=f(3).
(1)求函数f(x)的解析式;
(2)若函数f(x)的定义域为(-2,2],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知如表格所示数据的回归直线方程为$\widehat{y}=3.8x+a$,则a的值为240.
 2 5 6
 y252  255 258263  267

查看答案和解析>>

同步练习册答案