精英家教网 > 高中数学 > 题目详情
3.在△ABC中,BC=2,B=60°,若△ABC的面积等于$\frac{\sqrt{3}}{2}$,则AC边长为(  )
A.$\sqrt{3}$B.2C.5D.$\sqrt{5}$

分析 由△ABC的面积等于$\frac{\sqrt{3}}{2}$,求出AB=1,由此利用余弦定理能求出AC的边长.

解答 解:∵在△ABC中,BC=2,B=60°,△ABC的面积等于$\frac{\sqrt{3}}{2}$,
∴S=$\frac{1}{2}×2×AB×sin60°$=$\frac{\sqrt{3}}{2}$,
解得AB=1,
∴AC=$\sqrt{{2}^{2}+{1}^{2}-2×2×1×cos60°}$=$\sqrt{3}$.
故选:A.

点评 本题考查边长的求法,考查正弦定理、余弦定理、三角形面积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知4sinAcos2A-$\sqrt{3}$cos(B+C)=sin3A+$\sqrt{3}$.
(Ⅰ)求A的值;
(Ⅱ)若△ABC为锐角三角形,b=2,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,-3)$.
(1)若$|\overrightarrow c|=2\sqrt{10}$,且$\overrightarrow c∥\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若$|\overrightarrow b|=\sqrt{5}$,且$(\overrightarrow a+\overrightarrow b)$与$(\overrightarrow a-2\overrightarrow b)$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$C_{10}^x=C_{10}^2$,则正整数x的值为(  )
A.2B.8C.2或6D.2或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,
给出下列结论:
①四面体ABCD每个面的面积相等;
②从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90° 而小于180°
③连结四面体ABCD每组对棱中点的线段相互垂直平分;
④从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是①③④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若$f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)若将y=f(x)图象上所有点沿着$\overrightarrow a=(-θ,0)(θ>0)$方向移动得到y=g(x)的图象,若y=g(x)图象的一个对称轴为$x=\frac{5}{6}π$,求θ的最小值;
(3)在第(2)问的前提下,求出函数y=g(x)在$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若随机变量X的概率分布列为(  )
X01
Pp1p2
且p1=$\frac{1}{2}$p2,则p1等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是首项为4,公差为3的等差数列,数列{bn}满足bn(an$\sqrt{{a}_{n+1}}$+an+1$\sqrt{{a}_{n}}$)=1,则数列{bn}的前20项的和为$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案