精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知4sinAcos2A-$\sqrt{3}$cos(B+C)=sin3A+$\sqrt{3}$.
(Ⅰ)求A的值;
(Ⅱ)若△ABC为锐角三角形,b=2,求c的取值范围.

分析 (Ⅰ)由二倍角公式、诱导公式、同角三角函数关系式、三角函数恒等式推导出sinA+$\sqrt{3}cosA$-$\sqrt{3}$=0,从而2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,由此能求出A的值.
(Ⅱ)由△ABC为锐角三角形,b=2,A=$\frac{π}{3}$,得到$\frac{π}{6}$<C<$\frac{π}{2}$,由此能求出c的取值范围.

解答 解:(Ⅰ)在△ABC中,∵4sinAcos2A-$\sqrt{3}$cos(B+C)=sin3A+$\sqrt{3}$.
∴4×$sinA×\frac{cos2A+1}{2}$+$\sqrt{3}$cosA=sin(A+2A)+$\sqrt{3}$,
2sinAcos2A+2sinA+$\sqrt{3}sinA$=sinAcos2A+cosAsin2A+$\sqrt{3}$,
∴sinAcos2A-cosAsin2A+2sinA+$\sqrt{3}$cosA-$\sqrt{3}$=0,
∴sinA+$\sqrt{3}cosA$-$\sqrt{3}$=0,
∴2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,
∵0<A<π,∴A=$\frac{π}{3}$.
(Ⅱ)∵△ABC为锐角三角形,b=2,A=$\frac{π}{3}$,
∴30°<C<90°,
∴$\sqrt{{2}^{2}-{1}^{2}}$<c<2×2,即$\sqrt{3}<c<4$.
∴c的取值范围是($\sqrt{3},4$).

点评 本题考查三角形中角的求法,考查边的取值范围的求法,考查二倍角公式、诱导公式、同角三角函数关系式、三角函数恒等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.从一批苹果中,随机抽取65个,其重量(克)的数据分布表如下:
分组(重量)[80,85)[85,90)[90,95)[95,100)
频数(个)5153015
(1)用分层抽样的方法从重量在[80,85)和[95,100)的品种共抽取4个,重量在[80,85)的有几个?
(2)在(1)中抽取4个苹果中任取2个,其重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列数列中不是等差数列的为(  )
A.6,6,6,6,6B.-2,-1,0,1,2C.5,8,11,14D.0,1,3,6,10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知复数z=3+bi,(b为正实数),且(z-2)2为纯虚数.若w=(2+i)z求复数w的模.
(2)有以下三个不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2
请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,将△CBD沿BD翻折到△EBD的位置.
(1)求证:直线BD⊥平面ACE;
(2)若二面角E-BD-C的大小为60°,∠DBE=60°,求直线CE与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设 a=1.10.9,b=0.91.1,c=0.90.9,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是第一象限角,且sinα=2sinβ,tanα=3tanβ,则cosα的值是(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{5}{13}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,AB=2,AC=$\sqrt{3}$BC,则当△ABC面积最大值时其周长为(  )
A.2$\sqrt{3}$+2B.$\sqrt{3}$+3C.2$\sqrt{3}$+4D.$\sqrt{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,BC=2,B=60°,若△ABC的面积等于$\frac{\sqrt{3}}{2}$,则AC边长为(  )
A.$\sqrt{3}$B.2C.5D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案