精英家教网 > 高中数学 > 题目详情
9.设a=sin405°,b=cos(-52°),c=tan47°,则a、b、c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.a<c<b

分析 利用诱导公式化简a、b可得1>a>b>0,再利用正切函数的单调性求得c>1,从而得出结论.

解答 解:∵a=sin405°=sin45°=$\frac{\sqrt{2}}{2}$,b=cos(-52°)=cos52°=sin38°<$\frac{\sqrt{2}}{2}$,c=tan47°>tan45°=1,
则a、b、c的大小关系为c>a>b,即b<a<c,
故选:C.

点评 本题主要考查三角函数的化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{x}^{2}+ax+a}{x}$,x∈[1,+∞),且a<1
(1)判断f(x)的单调性并证明;
(2)若m满足f(3m)>f(5-2m),试确定m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知正六边形ABCDEF,O是它的中心,若$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$将向量,$\overrightarrow{OE}$,$\overrightarrow{BF}$,$\overrightarrow{BD}$,$\overrightarrow{FD}$表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在两个分类变量的独立性检验过程中有如下表格:
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
k00.4550.7081.3232.0722.7063.8415.0246.6357.879
已知两个分类变量X和Y,如果在犯错误的概率不超过0.05的前提下认为X和Y有关系,则随机变量K2的观测值可以位于的区间是(  )
A.(0.05,0.10)B.(0.025,0.05)C.(2.706,3.841)D.(3.841,5.024)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,-3)$.
(1)若$|\overrightarrow c|=2\sqrt{10}$,且$\overrightarrow c∥\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若$|\overrightarrow b|=\sqrt{5}$,且$(\overrightarrow a+\overrightarrow b)$与$(\overrightarrow a-2\overrightarrow b)$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若3x=9,则x3=(  )
A.27B.24C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种产品的广告费用支出x与销售额y之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,求回归直线方程$\widehat{y}$=bx+a;
(3)据此估计广告费用为10时,销售收入y的值.
(参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{a-1}{x}-2a,g(x)=-ax-1$,a>0.
(1)设h(x)=f(x)-g(x),若函数h(x)在$({0,\frac{1}{2}})$上是减函数,求实数a的取值范围;
(2)若f(x)≥g(x)+lnx在[1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案