精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{{x}^{2}+ax+a}{x}$,x∈[1,+∞),且a<1
(1)判断f(x)的单调性并证明;
(2)若m满足f(3m)>f(5-2m),试确定m的取值范围.

分析 (1)根据函数的解析式以及函数的单调性与导数的关系,判断函数的单调性.
(2)结合函数的定义域以及函数的单调性可得3m>5-2m≥1,由此求得 m的范围.

解答 解:(1)函数f(x)=$\frac{{x}^{2}+ax+a}{x}$=x+a+$\frac{a}{x}$,x∈[1,+∞),且a<1,
∴当x≥1时,f′(x)=1-$\frac{a}{{x}^{2}}$≥0,故函数f(x)在∈[1,+∞)上单调递增.
(2)若m满足f(3m)>f(5-2m),结合函数f(x)在∈[1,+∞)上单调递增,
可得3m>5-2m≥1,求得1<m≤2,故实数m的取值范围为(1,2].

点评 本题主要考查函数的单调性的判断和证明,函数的单调性与导数的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{3}$sin($\frac{π}{3}$-2x)-cos2x,则
(1)函数f(x)的最小正周期为π;
(2)函数f(x)的最大值为1;
(3)函数f(x)的单调增区间为[kπ-$\frac{2π}{3}$,≤kπ-$\frac{π}{6}$],k∈Z.理由根据余弦函数的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知AM是△ABC的边BC上的中线,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$等于$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:f(x)=lg(x2+ax+1)的定义域为R,命题q:关于x 的不等式x+|x-2a|>1的解集为R,若“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,则该几何体的体积为$\frac{1}{3}$,表面积为$\frac{3}{2}+\frac{\sqrt{3}}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列数列中不是等差数列的为(  )
A.6,6,6,6,6B.-2,-1,0,1,2C.5,8,11,14D.0,1,3,6,10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.己知随机变量X~B(4,0.5),若Y=2X+1,则D(Y)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,将△CBD沿BD翻折到△EBD的位置.
(1)求证:直线BD⊥平面ACE;
(2)若二面角E-BD-C的大小为60°,∠DBE=60°,求直线CE与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=sin405°,b=cos(-52°),c=tan47°,则a、b、c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.a<c<b

查看答案和解析>>

同步练习册答案