精英家教网 > 高中数学 > 题目详情
3.已知AM是△ABC的边BC上的中线,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$等于$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).

分析 根据题意画出图形,结合图形用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出$\overrightarrow{CB}$、$\overrightarrow{CM}$和$\overrightarrow{AM}$即可.

解答 解:如图所示,
AM是△ABC的边BC上的中线,
$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,
∴$\overrightarrow{CB}$=$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{a}$-$\overrightarrow{b}$,
∴$\overrightarrow{CM}$=$\frac{1}{2}$$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$),
∴$\overrightarrow{AM}$=$\overrightarrow{AC}$+$\overrightarrow{CM}$=$\overrightarrow{b}$+$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).
故答案为:$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$).

点评 本题考查了平面向量的线性表示与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知正项等差数列{an}的前n(n∈N*)项和为Sn,a3=3,且λSn=anan+1,在正项等比数列{bn}中,b1=2λ,b3=a15+1.
(1)求数列{an}及{bn}的通项公式;
(2)设数列{cn}的前n(n∈N*)项和为Tn,且cn=$\left\{\begin{array}{l}{{a}_{n}+1,n为正奇数}\\{{b}_{n},n为正偶数}\end{array}\right.$,求不等式T2n<n2+n+480的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}2+|{x-2}|(x≥0)\\{({\frac{1}{2}})^x}-1(x<0)\end{array}$,当函数g(x)=2m-f(x)有三个零点时,实数m的取值范围是(  )
A.m>1B.m≥2C.1<m≤2D.1≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下联表:(  )
  女 男 总计
 读营养说明 16 28 44
 不读营养说明 20 8 28
 总计 36 3672
参考公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 p(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.89710.828
则根据以上数据:
A.能够以99.5%的把握认为性别与读营养说明之间无关系
B.能够以99.9%的把握认为性别与读营养说明之间无关系
C.能够以99.5%的把握认为性别与读营养说明之间有关系
D.能够以99.9%的把握认为性别与读营养说明之有无关系

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},0≤x<2}\\{8-2x,2≤x≤4}\end{array}\right.$,若函数g(x)=f(|x-2|)-n有4个零点,则实数n的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,面积$S=\frac{{\sqrt{3}}}{2}$,c=2,B=60°,则a=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{x}^{2}+ax+a}{x}$,x∈[1,+∞),且a<1
(1)判断f(x)的单调性并证明;
(2)若m满足f(3m)>f(5-2m),试确定m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

同步练习册答案