精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足Sn=
1
4
(an+1)2
,且an>0.
(1)求数列{an}的通项公式
(2)令bn=20-an,试求数列{bn}的前多少项的和最大?
(1)当n=1时,有a1=S1=
1
4
(a1+1)2
,∴a1=1
当n=2时,有a1+a2=
1
4
(a2+1)2
,∴a1=3
当n≥2时,有an=Sn-Sn-1=
1
4
[(an+1)2-(an-1+1)2]

∴(an+an-1)(an-an-1-2)=0又∵an>0,∴an-an-1=2,
∴数列{an}是以1为首项,以2为公差的等差数列,
∴an=1+(n-1)×2=2n-1
(2)由于bn=20-an=21-2n,则b1=19,bn-bn-1=-2<0.
∴{bn}是递减数列,
bn=21-2n>0  
bn+1=19-2n<0

∴n=10,即数列{bn}的前10项和最大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案