精英家教网 > 高中数学 > 题目详情

【题目】是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

的浓度微克/立方米

Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;

Ⅱ)根据上表数据,用最小二乘法求出关于的线性回归方程

Ⅲ)若周六同一时间段的车流量是万辆,试根据(Ⅱ)求出的线性回归方程,预测此时的浓度为多少(保留整数)?

参考公式:由最小二乘法所得回归直线的方程是:

其中

【答案】(1)见解析.

(2) .

(3)37.

【解析】

根据横坐标和纵坐标,描出点即可。

根据所给公式和数据,可求得回归直线方程。

根据回归直线方程,预测值。

Ⅰ)散点图如下图所示.

关于的线性回归方程是:.

Ⅲ)当时,

所以可以预测此时的浓度约为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 是等差数列,且b1=a1 , b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若 ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且仅有两个不相等的实数解,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),则实数b的取值范围为(
A.[1,3]
B.(1,3)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的 倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l1:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,C,D两点均在x轴下方,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:

场数

9

10

11

12

13

14

人数

10

18

22

25

20

5

将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.

(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?

非歌迷

歌迷

合计

合计

(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是为参数).

(1)求直线l和曲线的普通方程;

(2)设直线l和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.

网购金额(元)

频数

频率

5

0.05

15

0.15

25

0.25

30

0.3

合计

100

1

(Ⅰ)先求出的值,再将图中所示的频率分布直方图绘制完整;

(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?

网龄3年以上

网龄不足3年

总计

购物金额在2000元以上

35

购物金额在2000元以下

20

总计

100

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

参考公式:其中.

(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在两组所抽中的8人中再随机抽取2人各奖励1000元现金,求组获得现金奖的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足 ,当 时,f(x)=lnx,若在 上,方程f(x)=kx有三个不同的实根,则实数k的取值范围是(
A.
B.[﹣4ln4,﹣ln4]
C.
D.

查看答案和解析>>

同步练习册答案