【题目】下列叙述正确的是( )
A.相关关系是一种确定性关系,一般可分为正相关和负相关
B.回归直线一定过样本点的中心
C.在回归分析中,为0.98的模型比为0.80的模型拟合的效果好
D.某同学研究卖出的热饮杯数与气温的关系,得到回归方程,则气温为2℃时,一定可卖出142杯热饮
科目:高中数学 来源: 题型:
【题目】在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某昆虫的产卵数与温度有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如图的散点图及一些统计量表.
275 | 731.1 | 21.7 | 150 | 2368.36 | 30 |
表中,
(1)根据散点图判断,,与哪一个适宜作为与之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求关于回归方程;
②已知用人工培养该昆虫的成本与温度和产卵数的关系为,当温度(取整数)为何值时,培养成本的预报值最小?
附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:,当,时.
其中表示,,,中的最大项,有以下结论:
若数列是常数列,则
若数列是公差的等差数列,则;
若数列是公比为q的等比数列,则
则其中正确的结论是______写出所有正确结论的序号
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.
已知,且,若数列和满足:,且,.
若,求的取值范围;
求证:数列是“拟等比数列”;
已知等差数列的首项为,公差为d,前n项和为,若,,,且是“拟等比数列”,求p的取值范围请用,d表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果经销商为了对一批刚上市水果进行合理定价,将该水果按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价(元/公斤) | 16 | 17 | 18 | 19 | 20 |
日销售量(公斤) | 168 | 146 | 120 | 90 | 56 |
(1)已知变量具有线性相关关系,求该水果日销售量(公斤)关于试销单价(元/公斤)的线性回归方程,并据此分析销售单价时,日销售量的变化情况;
(2)若该水果进价为每公斤元,预计在今后的销售中,日销售量和售价仍然服从(1)中的线性相关关系,该水果经销商如果想获得最大的日销售利润,此水果的售价应定为多少元?
(参考数据及公式:,,,线性回归方程,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新型冠状病毒疫情期间,商业活动受到很大影响某小型零售连锁店总部统计了本地区50家加盟店2月份的零售情况,统计数据如图所示.据估计,平均销售收入比去年同期下降40%,则去年2月份这50家加盟店的平均销售收入约为( )
A.6.6万元B.3.96万元C.9.9万元D.7.92万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com