精英家教网 > 高中数学 > 题目详情
6.已知数列{an}为等差数列,公差d=-2,Sn为其前n项的和.若S10=S12,则a1=(  )
A.19B.20C.21D.22

分析 利用等差数列的前n项和公式即可得出.

解答 解:∵S10=S12
∴10a1+$\frac{10×9}{2}$×(-2)=12a1+$\frac{12×11}{2}$×(-2),化为:2a1=42,
则a1=21.
故选:C.

点评 本题考查了等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.计算由直线y=$\frac{2}{3}x-\frac{4}{3}$,曲线y=$\sqrt{2x}$以及x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,AB=3,AC=4,M是边BC的中点,则$\overrightarrow{AM}•\overrightarrow{BC}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,sin2x≤1,则(  )
A.¬p:?x0∈R,sin2x0≥1B.¬p:?x∈R,sin2x≥1
C.¬p:?x0∈R,sin2x0>1D.¬p:?x∈R,sin2x>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=1+ai(a∈R)在复平面对应的点在第一象限,且|$\overrightarrow{z}$|=$\sqrt{5}$,则z的虚部为(  )
A.2B.4C.2iD.4i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足$\frac{sinA}{sinB}$=-$\frac{sinC}{tanC}$.
(1)求$\frac{3{a}^{2}+{b}^{2}}{{c}^{2}}$的值;
(2)若c=4,且△ABC的面积为$\sqrt{3}$,求边a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若定义在R上的函数f(x),满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2015)+f(2016)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,已知向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(4a-b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面积S=$\frac{{\sqrt{15}}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=2,对任意的n∈N*都有an+1=3an+3n+1-2n,记bn=$\frac{{{a_n}-{2^n}}}{3^n}$(n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求Sn
(3)证明:存在k∈N*,使得$\frac{{{a_{n+1}}}}{a_n}$≤$\frac{{{a_{k+1}}}}{a_k}$.

查看答案和解析>>

同步练习册答案