精英家教网 > 高中数学 > 题目详情
2.已知△ABC的面积为8,cosA=$\frac{3}{5}$,D为BC上一点,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,过点D做AB,AC的垂线,垂足分别为E,F,则$\overrightarrow{DE}$•$\overrightarrow{DF}$=-$\frac{36}{25}$.

分析 根据题意,利用△ABC的面积求出|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|的值,再利用$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$求出D是BC的四等分点,计算S△ABD和S△ACD的值,求|$\overrightarrow{AB}$|•|$\overrightarrow{DE}$|•|$\overrightarrow{AC}$|•|$\overrightarrow{DF}$|的值,从而求出|$\overrightarrow{DE}$|•|$\overrightarrow{DF}$|的值,计算数量积$\overrightarrow{DE}$•$\overrightarrow{DF}$的值.

解答 解:如图所示,
△ABC中,cosA=$\frac{3}{5}$,∴sinA=$\sqrt{1{-cos}^{2}A}$=$\frac{4}{5}$;
∴S△ABC=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|sinA=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•$\frac{4}{5}$=8,
即|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=20;
设$\overrightarrow{BD}$=λ$\overrightarrow{BC}$,λ∈(0,1),
则$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+λ($\overrightarrow{AC}$-$\overrightarrow{AB}$)=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,
又$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,∴λ=$\frac{3}{4}$;
∴$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=$\frac{\frac{1}{2}BD•h}{\frac{1}{2}CD•h}$=$\frac{BD}{CD}$=$\frac{3}{1}$=3,
∴S△ABD=$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{DE}$|=$\frac{3}{4}$×8=6,
∴|$\overrightarrow{AB}$|•|$\overrightarrow{DE}$|=12;
又S△ACD=$\frac{1}{2}$|$\overrightarrow{AC}$|•|$\overrightarrow{DF}$|=2,
∴|$\overrightarrow{AC}$|•|$\overrightarrow{DF}$|=4;
∴|$\overrightarrow{AB}$|•|$\overrightarrow{DE}$|•|$\overrightarrow{AC}$|•|$\overrightarrow{DF}$|=48,
∴|$\overrightarrow{DE}$|•|$\overrightarrow{DF}$|=$\frac{48}{20}$=$\frac{12}{5}$,
∴$\overrightarrow{DE}$•$\overrightarrow{DF}$=|$\overrightarrow{DE}$|•|$\overrightarrow{DF}$|•cos(180°-A)=$\frac{12}{5}$×(-$\frac{3}{5}$)=-$\frac{36}{25}$.
故答案为:-$\frac{36}{25}$.

点评 本题考查了平面向量的数量积与三角形面积公式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.2月21日教育部举行新闻发布会,介绍2017年全国靑少年校园足球工作计划,提出将着力提高校园足球特色学校的建设质量和水平,争取提前完成建设2万所校园足球特色学校,到2025年校园足球特色学校将达到5万所.为了调查学生喜欢足球是否与性别有关,从某足球特色学校抽取了50名同学进行调查,得到以下数据(单位:人):
喜爱不喜爱合计
男同学24630
女同学61420
合计302050
(1)能否在犯错概率不超过0.001的前提下认为喜爱足球与性别有关?
(2)现从30个喜爱足球的同学中按分层抽样的方法抽出5人,再从里面任意选出2人对其训练情况进行全程跟踪调查,求选出的刚好是一男一女的概率.
附表及公式:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U={1,2,3,4,5},∁U(A∪B)={1},A∩(∁UB)={3,4},则集合B=(  )
A.{1,2,4,5}B.{2,4,5}C.{1,2,5}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为(  )
A.[-3e-4,1)B.[-3e-4,1)∪{-e-2}C.[0,1)∪{-e-2}D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知当$x∈[{0,\frac{π}{4}}]$时,函数$f(x)=2sin(ωx+\frac{π}{6})-1$(ω>0)有且仅有5个零点,则ω的取值范围是$[16,\frac{56}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足的约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为$\frac{181}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$对称,且图象上相邻最高点的距离为π.将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到y=g(x)的图象,则g(x)的单调递减区间为.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设$\overrightarrow{a}$=(cosx,-1),$\overrightarrow{b}$=(sinx-cosx,-1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{1}{2}$
(1)求函数f(x)的解析式;
(2)求函数f(x)的对称轴方程和对称中心的坐标;
(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)的图象与函数y=(x-2)e2-x的图象关于点(1,0)对称,且方程f(x)=mx2 只有一个实根,则实数m的取值范围为(  )
A.[0,e)B.(-∞,e)C.{e}D.(-∞,0)∪{e}

查看答案和解析>>

同步练习册答案