精英家教网 > 高中数学 > 题目详情
4.关于函数$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命题正确的是(  )
A.由f(x1)=f(x2)=1可得x1-x2是π的整数倍
B.y=f(x)的表达式可改写成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的图象关于点$(\frac{π}{6},1)$对称
D.y=f(x)的图象关于直线$x=\frac{3}{4}π$对称

分析 由条件利用诱导公式,正弦函数的图象和性质,判断各个选项是否正确,从而得出结论.

解答 解:对于函数$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,由f(x1)=f(x2)=1可得  sin(2x1)=sin(2x2)=0,
∴2x1-2x2是 π的整数,即x1-x2是$\frac{π}{2}$的整数倍,故A不正确.
函数f(x)=3sin(2x-$\frac{π}{3}$)+1=3cos[$\frac{π}{2}$-(2x-$\frac{π}{3}$)]+1=3cos($\frac{5π}{6}$-2x)+1=3cos(2x-$\frac{5π}{6}$)+1=-3cos(2x+$\frac{π}{6}$)+1,故B不正确.
对于函数$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,令x=$\frac{π}{6}$,可得f(x)=1,故y=f(x)的图象关于点$(\frac{π}{6},1)$对称,故C正确.
令x=$\frac{3π}{4}$,求得函数f(x)=3sin(2x-$\frac{π}{3}$)+1=3cos$\frac{7π}{6}$+1=-$\frac{3\sqrt{3}}{2}$+1,不是函数的最值,故D错误,
故选:C.

点评 本题主要考查诱导公式,正弦函数的图象和性质应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设各项均为正数的数列{an}的前n项之积为Tn,若Tn=2${\;}^{{n^2}+n}}$,则$\frac{{{a_n}+8}}{2^n}$的最小值为(  )
A.7B.6C.$\frac{17}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=lnx-x在区间(0,e]上的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(2)关于x的不等式$\frac{f(x)}{x-1}>1$在区间(1,e)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$f(x)=\frac{{{e^{ax}}}}{x}$(其中e=2.718…).
(1)若f(x)在(0,4]上是减函数,求实数a的取值范围;
(2)当a=1时,求函数f(x)在[m,m+2](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x2+ax-alnx.
(1)a=1时,求函数f(x)的单调区间;
(2)a>1时,求函数f(x)在[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象相邻的两条对称轴方程为x=0与x=$\frac{π}{2}$,则(  )
A.f(x)的最小正周期为2π,且在(0,π)上为单调递增函数
B.f(x)的最小正周期为2π,且在(0,π)上为单调递减函数
C.f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为单调递增函数
D.f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为单调递减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线ax+3y-2=0过点A(2,4),则a=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题“(¬p)∨(¬q)”是假命题,给出下列四个结论:
①命题“p∧q”是真命题;       ②命题“p∧q”是假命题;
③命题“p∨q”是假命题;       ④命题“p∨q”是真命题.
其中正确的结论为(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

同步练习册答案