精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(2)关于x的不等式$\frac{f(x)}{x-1}>1$在区间(1,e)上恒成立,求实数a的取值范围.

分析 (1)求函数的导数,根据函数导数和切线斜率之间的关系即可求实数a的值;(2)利用参数分离法结合导数的应用即可得到结论.

解答 解答:(1)函数的f(x)的导数f′(x)=$\frac{a}{x}$(a>0),
∵过点A(2,f(2))的切线斜率为2,
∴f′(2)=$\frac{a}{2}$=2,解得a=4;
(2)由$\frac{f(x)}{x-1}$>1,得:$\frac{alnx+1-x}{x-1}$>0,
令h(x)=alnx+1-x,则h′(x)=$\frac{a}{x}$-1,
令h′(x)>0,解得x<a,
当a>e时,h(x)在(1,e)是增函数,
所以h(x)>h(1)=0,
当1<a≤e时,h(x)在(1,a)上递增,(a,e)上递减,
∴只需h(x)≥0,即a≥e-1;
当a≤1时,h(x)在(1,e)上递减,则需h(e)≥0,
∵h(e)=a+1-e<0不合题意;
综上,a≥e-1.

点评 本题主要考查导数的综合应用,要求熟练掌握导数的几何意义,函数单调性最值和导数之间的关系,考查学生的综合应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在平行四边形ABCD中,已知AB=2,AC=$\sqrt{7}$,AD=1.若点P,Q满足$\overrightarrow{AC}$=3$\overrightarrow{AP}$,$\overrightarrow{BD}$=4$\overrightarrow{PQ}$,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的值为$\frac{19}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F为椭圆C的左焦点,M为直线x=-3上任意一点,过F作MF的垂线交椭圆C于点P,Q.证明:OM经过线段PQ的中点N.(其中O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=4y与直线y=kx+1交于M,N两点,其中点M位于点N的左侧.
(1)当k=0时,分别求抛物线C在点M和N处的切线方程;
(2)在y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN(O为坐标原点)?若存在,求出P点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,两焦点F1、F2在x轴上,上顶点B与F1、F2围成一个正三角,且椭圆C经过点(1,$\frac{3}{2}$).
(1)求椭圆C的离心率e和标准方程;
(2)过右焦点F2的直线l将△BF1F2平分成面积相等的两部分,求直线l被椭圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ln x+$\frac{m}{x}$,m∈R.
(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(2)当m为何值时,g(x)=f′(x)-$\frac{x}{3}$有且只有一个零点;
(3)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.关于函数$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命题正确的是(  )
A.由f(x1)=f(x2)=1可得x1-x2是π的整数倍
B.y=f(x)的表达式可改写成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的图象关于点$(\frac{π}{6},1)$对称
D.y=f(x)的图象关于直线$x=\frac{3}{4}π$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos2x-sin2xsinφ-2cos2xsin2$\frac{φ}{2}$(0<φ<$\frac{π}{2}$)的图象的一个对称中心为($\frac{π}{6}$,0),则下列说法不正确的是(  )
A.直线x=$\frac{5}{12}$π是函数f(x)的图象的一条对称轴
B.函数f(x)在[0,$\frac{π}{6}$]上单调递减
C.函数f(x)的图象向右平移$\frac{π}{6}$个单位可得到y=cos2x的图象
D.函数f(x)在x∈[0,$\frac{π}{2}$]上的最小值为-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2-ax+1(a∈R)
(Ⅰ)若对任意x1∈[1,2],任意x2∈[3,6],都有f(x1)≥f(x2),求a的取值范围;
(Ⅱ)若不等式|f(x)|≥2x+1在[1,2]上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案