分析 (I)由椭圆C的焦距为4,及等边三角形的性质和a2=b2+c2,求得a,b,即可求椭圆C的标准方程;
(Ⅱ)设M(-3,m),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),kMF=-m,设直线PQ的方程为x=my-2,代入椭圆方程,运用韦达定理和中点坐标公式,结合三点共线的方法:斜率相等,即可得证.
解答 解:(Ⅰ)由题意可得c=2,
短轴的两个端点与长轴的一个端点构成正三角形,可得
a=$\frac{\sqrt{3}}{2}$•2b,即有a=$\sqrt{3}$b,a2-b2=4,
解得a=$\sqrt{6}$,b=$\sqrt{2}$,
则椭圆方程为$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1;
(Ⅱ)证明:设M(-3,m),P(x1,y1),Q(x2,y2),
PQ的中点为N(x0,y0),kMF=-m,
由F(-2,0),可设直线PQ的方程为x=my-2,
代入椭圆方程可得(m2+3)y2-4my-2=0,
即有y1+y2=$\frac{4m}{3+{m}^{2}}$,y1y2=-$\frac{2}{3+{m}^{2}}$,
于是N(-$\frac{6}{3+{m}^{2}}$,$\frac{2m}{3+{m}^{2}}$),
则直线ON的斜率kON=-$\frac{m}{3}$,
又kOM=-$\frac{m}{3}$,
可得kOM=kON,
则O,N,M三点共线,即有OM经过线段PQ的中点.
点评 本题考查椭圆的方程和性质,主要考查椭圆方程的运用,注意联立直线方程,运用韦达定理和中点坐标公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 45 | B. | 180 | C. | -180 | D. | 720 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 6 | C. | $\frac{17}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | 4 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com