精英家教网 > 高中数学 > 题目详情
12.在平行四边形ABCD中,已知AB=2,AC=$\sqrt{7}$,AD=1.若点P,Q满足$\overrightarrow{AC}$=3$\overrightarrow{AP}$,$\overrightarrow{BD}$=4$\overrightarrow{PQ}$,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的值为$\frac{19}{36}$.

分析 可画出图形,在△ABC中由余弦定理便可求出$cos∠ABC=-\frac{1}{2}$,进而得出$\overrightarrow{BA}•\overrightarrow{BC}=-1$,而根据条件可得出$\overrightarrow{AP}=\frac{1}{3}(\overrightarrow{BC}-\overrightarrow{BA}),\overrightarrow{AQ}=\frac{7}{12}\overrightarrow{BC}-\frac{1}{12}\overrightarrow{BA}$,从而进行向量数量积的运算便可求出$\overrightarrow{AP}•\overrightarrow{AQ}$的值.

解答 解:如图,在△ABC中,AB=2,BC=1,AC=$\sqrt{7}$,由余弦定理得:$cos∠ABC=\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}=\frac{4+1-7}{4}=-\frac{1}{2}$;
∴$\overrightarrow{BA}•\overrightarrow{BC}=-1$;
根据条件,$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AC}=\frac{1}{3}(\overrightarrow{BC}-\overrightarrow{BA})$;
$\overrightarrow{AQ}=\overrightarrow{AP}+\overrightarrow{PQ}$
=$\overrightarrow{AP}+\frac{1}{4}\overrightarrow{BD}$
=$\frac{1}{3}(\overrightarrow{BC}-\overrightarrow{BA})+\frac{1}{4}(\overrightarrow{BC}+\overrightarrow{BA})$
=$\frac{7}{12}\overrightarrow{BC}-\frac{1}{12}\overrightarrow{BA}$;
∴$\overrightarrow{AP}•\overrightarrow{AQ}$
=$\frac{1}{3}(\overrightarrow{BC}-\overrightarrow{BA})•(\frac{7}{12}\overrightarrow{BC}-\frac{1}{12}\overrightarrow{BA})$
=$\frac{7}{36}{\overrightarrow{BC}}^{2}-\frac{2}{9}\overrightarrow{BC}•\overrightarrow{BA}+\frac{1}{36}{\overrightarrow{BA}}^{2}$
=$\frac{7}{36}+\frac{2}{9}+\frac{1}{9}$
=$\frac{19}{36}$.
故答案为:$\frac{19}{36}$.

点评 考查向量加法、减法的几何意义,以及向量的数乘运算,向量数量积的运算及计算公式,以及余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆C1:x2+y2-6x-7=0,圆C2:x2+y2-4y-5=0,两圆的位置关系相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x-3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=(  )
A.45B.180C.-180D.720

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,已知∠ACB=90°,CA=3,CB=4,点E是边AB的中点,则$\overrightarrow{CE}$•$\overrightarrow{AB}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2019)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面有四个结论:①集合N中最小的数是1;②若-a∉N,则a∈N;③若a∈N,b∈N,则a+b的最小值为2;
④x2+4=4x的解集中有2个元素,其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设各项均为正数的数列{an}的前n项之积为Tn,若Tn=2${\;}^{{n^2}+n}}$,则$\frac{{{a_n}+8}}{2^n}$的最小值为(  )
A.7B.6C.$\frac{17}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合{x∈Z|$\frac{2}{x-1}$+1>0且x2-(k+3)x+3k<0}={2},则实数k的取值范围是[-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(2)关于x的不等式$\frac{f(x)}{x-1}>1$在区间(1,e)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案