精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=ln x+$\frac{m}{x}$,m∈R.
(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(2)当m为何值时,g(x)=f′(x)-$\frac{x}{3}$有且只有一个零点;
(3)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

分析 (1)求出函数的导数,通过讨论x的范围,判断导函数的符号,从而求出函数的单调区间,进而求出函数的极小值即可;
(2)求出函数的导数,得到m=-$\frac{1}{3}$x3+x(x>0),根据函数的单调性,求出函数的单调区间,从而求出满足条件的m的范围;
(3)设h(x)=f(x)-x=ln x+$\frac{m}{x}$-x(x>0),问题等价于h(x)在(0,+∞)上单调递减,得到m≥-x2+x=-${(x-\frac{1}{2})}^{2}$+$\frac{1}{4}$(x>0)恒成立,求出函数的最大值,从而求出m的范围即可.

解答 解:(1)由题设,当m=e时,f(x)=ln x+$\frac{e}{x}$,则f′(x)=$\frac{x-e}{x2}$,-------(1分)
∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上单调递减;
当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增.
∴x=e时,f(x)取得极小值f(e)=ln e+$\frac{e}{e}$=2,
∴f(x)的极小值为2.--------------------------------------------------------(3分)
(2)由题设g(x)=f′(x)-$\frac{x}{3}$=$\frac{1}{x}$-$\frac{m}{x2}$-$\frac{x}{3}$(x>0),
令g(x)=0,得m=-$\frac{1}{3}$x3+x(x>0),
设φ(x)=-$\frac{1}{3}$x3+x(x>0),
则φ′(x)=-x2+1=-(x-1)(x+1),
当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;
当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.
∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,
∴φ(x)的最大值为φ(1)=$\frac{2}{3}$.--------------------------------------------------------(6分)
又φ(0)=0,结合y=φ(x)的图象(如图所示),可知

综上所述,
当m=$\frac{2}{3}$或m≤0时,函数g(x)有且只有一个零点;------(8分)
(3)对任意的b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,
等价于f(b)-b<f(a)-a恒成立.(*)------------------(9分),
设h(x)=f(x)-x=ln x+$\frac{m}{x}$-x(x>0),
∴(*)等价于h(x)在(0,+∞)上单调递减.-------(10分)
由h′(x)=$\frac{1}{x}$-$\frac{m}{x2}$-1≤0在(0,+∞)上恒成立,
得m≥-x2+x=-${(x-\frac{1}{2})}^{2}$+$\frac{1}{4}$(x>0)恒成立,---------(11分)
∴m≥$\frac{1}{4}$(对m=$\frac{1}{4}$,h′(x)=0仅在$\frac{1}{2}$时成立),
∴m的取值范围是:[$\frac{1}{4}$,+∞).---------(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下面有四个结论:①集合N中最小的数是1;②若-a∉N,则a∈N;③若a∈N,b∈N,则a+b的最小值为2;
④x2+4=4x的解集中有2个元素,其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$(b+8)x2+2x(a>0,b<0)在区间[1,2]上单调递减,则(1-a)(b+1)的最大值为(  )
A.$\frac{9}{2}$B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{a+1}{x}$-alnx(a∈R)
(1)当a=1时,求函数f(x)的图象在x=1处的切线方程
(2)若在[1,e](e=2.7182…为自然对数的底数)上存在一点x0,使得f(x0)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(2)关于x的不等式$\frac{f(x)}{x-1}>1$在区间(1,e)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=xlnx.
(1)求f′(x);
(2)设0<a<b,求常数c,使得$\frac{1}{b-a}\int_a^b{|lnx-c|dx}$取得最小值;
(3)记(2)中的最小值为Ma,b,证明Ma,b<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x2+ax-alnx.
(1)a=1时,求函数f(x)的单调区间;
(2)a>1时,求函数f(x)在[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果双曲线$\frac{x^2}{a^2}-\frac{y^2}{{{b^{\;}}}}$=1的一条渐近线方程为y=$\frac{2}{3}$x,那么它的离心率为(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{{\sqrt{13}}}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.正项等比数列{an}中,a2016=a2015+2a2014,若aman=16a12,则$\frac{4}{m}$+$\frac{1}{n}$的最小值等于(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{6}$

查看答案和解析>>

同步练习册答案