精英家教网 > 高中数学 > 题目详情
7.正项等比数列{an}中,a2016=a2015+2a2014,若aman=16a12,则$\frac{4}{m}$+$\frac{1}{n}$的最小值等于(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{6}$

分析 设正项等比数列{an}的公比为q,(q>0),运用等比数列的通项公式,解方程可得q=2,由条件可得m+n=6,运用乘1法和基本不等式,计算即可得到所求最小值.

解答 解:设正项等比数列{an}的公比为q,(q>0),
由a2016=a2015+2a2014,得q2=q+2,
解得q=2或q=-1(舍去).
又因为aman=16a12,即a12•2m+n-2=16a12
所以m+n=6.
因此$\frac{4}{m}+\frac{1}{n}=\frac{1}{6}({\frac{4}{m}+\frac{1}{n}})({m+n})$
=$\frac{1}{6}({5+\frac{4n}{m}+\frac{m}{n}})$≥$\frac{1}{6}$(5+2$\sqrt{\frac{4n}{m}•\frac{m}{n}}$)=$\frac{3}{2}$,
当且仅当m=4,n=2时,等号成立.
故选:B.

点评 本题考查最值的求法,注意运用乘1法和基本不等式,考查等比数列的通项公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ln x+$\frac{m}{x}$,m∈R.
(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(2)当m为何值时,g(x)=f′(x)-$\frac{x}{3}$有且只有一个零点;
(3)若对任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(x)=Asin(ωx+φ)(A,ω>0)部分图象如图,则函数表达式为f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.tan330°的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2-ax+1(a∈R)
(Ⅰ)若对任意x1∈[1,2],任意x2∈[3,6],都有f(x1)≥f(x2),求a的取值范围;
(Ⅱ)若不等式|f(x)|≥2x+1在[1,2]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列{an}的公差为2,若a1+a3+a5=3,则a4+a6+a8=(  )
A.30B.21C.18D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=x2+ax+$\frac{3}{4}$(a∈R),若对任意的x0∈R,f(x0)和f(x0+1)至多有一个为负值,实数a的取值范围是-2≤a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求函数f(x)=$\sqrt{4-2x}$+(x-1)0+$\frac{1}{x+1}$的定义域;(要求用区间表示)
(2)若函数f(x+1)=x2-2x,求f(3)的值和f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过三点A(3,2),B(4,5),C(1,6)的圆,则圆的面积为(  )
A.10πB.C.$\frac{5}{2}$πD.$\frac{5}{4}$π

查看答案和解析>>

同步练习册答案