| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{5}{3}$ | D. | $\frac{13}{6}$ |
分析 设正项等比数列{an}的公比为q,(q>0),运用等比数列的通项公式,解方程可得q=2,由条件可得m+n=6,运用乘1法和基本不等式,计算即可得到所求最小值.
解答 解:设正项等比数列{an}的公比为q,(q>0),
由a2016=a2015+2a2014,得q2=q+2,
解得q=2或q=-1(舍去).
又因为aman=16a12,即a12•2m+n-2=16a12,
所以m+n=6.
因此$\frac{4}{m}+\frac{1}{n}=\frac{1}{6}({\frac{4}{m}+\frac{1}{n}})({m+n})$
=$\frac{1}{6}({5+\frac{4n}{m}+\frac{m}{n}})$≥$\frac{1}{6}$(5+2$\sqrt{\frac{4n}{m}•\frac{m}{n}}$)=$\frac{3}{2}$,
当且仅当m=4,n=2时,等号成立.
故选:B.
点评 本题考查最值的求法,注意运用乘1法和基本不等式,考查等比数列的通项公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10π | B. | 5π | C. | $\frac{5}{2}$π | D. | $\frac{5}{4}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com