分析 (1)要使函数有意义,需要使函数解析式中的每个因式都有意义,然后解不等式组即可.
(2)换元法求解析式或者凑配法求解析式.
解答 解:(1)要使函数f(x)有意义
需满足$\left\{{\begin{array}{l}{4-2x≥0}\\{x-1≠0}\\{x+1≠0}\end{array}}\right.$,解得x≤2且x≠1且x≠-1.
所以函数的定义域为(-∞,-1)∪(-1,1)∪(1,2].
(2)∵f(x+1)=x2-2x,
用配凑法求函数解析式∵f(x+1)=x2-2x,
∴f(x+1)=(x+1)2-4(x+1)+3
故f(x)=x2-4x+3,(x∈R).
∴f(3)=0
点评 本题考查求函数定义域、求函数解析式.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{{\sqrt{13}}}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{5}{3}$ | D. | $\frac{13}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com