精英家教网 > 高中数学 > 题目详情
19.已知$f(x)=\frac{{{e^{ax}}}}{x}$(其中e=2.718…).
(1)若f(x)在(0,4]上是减函数,求实数a的取值范围;
(2)当a=1时,求函数f(x)在[m,m+2](m>0)上的最小值.

分析 (1)求出函数的导数,问题转化为a≤$\frac{1}{x}$在(0,4]恒成立,求出a的范围即可;
(2)求出f(x)的导数,通过讨论m的范围,得到函数的单调区间,从而求出函数的最小值即可.

解答 解:(1)f′(x)=$\frac{{e}^{ax}(ax-1)}{{x}^{2}}$,
若f(x)在(0,4]上是减函数,
只需ax-1≤0在(0,4]恒成立,
即a≤$\frac{1}{x}$在(0,4]恒成立,
∴a≤$\frac{1}{4}$;
(2)a=1时,f(x)=$\frac{{e}^{x}}{x}$,f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
∴f(x)在(-∞,0),(0,1)递减,在(1,+∞)递增,
①0<m<1时,2<m+2<3,
∴f(x)在[m,1)递减,在(1,+m+2]递增,
∴f(x)min=f(1)=e;
②m≥1时,f(x)在[m,m+2]递增,
∴f(x)min=f(m)=$\frac{{e}^{m}}{m}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.解关于x的不等式mx2-(m+2)x+m+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C焦点在x轴上,中心在原点,长轴长为4,离心率$\frac{\sqrt{3}}{2}$,F1、F2分别是椭圆的左、右焦点.
(1)若P是第一象限内椭圆C上的一点,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求点P的坐标;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,两焦点F1、F2在x轴上,上顶点B与F1、F2围成一个正三角,且椭圆C经过点(1,$\frac{3}{2}$).
(1)求椭圆C的离心率e和标准方程;
(2)过右焦点F2的直线l将△BF1F2平分成面积相等的两部分,求直线l被椭圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x-4y+1=0经过抛物线y=ax2的焦点,且此抛物线上存在一点P,使PA⊥PB,其中,A(0,2+m),B(0,2-m),则正数m的最小值为(  )
A.$\sqrt{7}$B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.关于函数$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命题正确的是(  )
A.由f(x1)=f(x2)=1可得x1-x2是π的整数倍
B.y=f(x)的表达式可改写成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的图象关于点$(\frac{π}{6},1)$对称
D.y=f(x)的图象关于直线$x=\frac{3}{4}π$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数y=f(x)=2x3-3x.
(1)求y=f(x)在x=1处的切线方程;
(2)求y=f(x)在区间[-2,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )
A.使用了归纳推理B.使用了类比推理
C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sinωx+cosωx+c(ω>0,x∈R,c是实数常数)的图象上的一个最高点($\frac{π}{6}$,1),与该最高点最近的一个最低点是($\frac{2π}{3}$,-3)
(1)求函数f(x)的解析式
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且b2=a2+c2+accosB,角A的取值范围是区间M,当x∈M时,试求函数f(x)的取值范围.

查看答案和解析>>

同步练习册答案