分析 (1)利用等比数列的通项公式即可得出;
(2)利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(1)等比数列{an}满足a3a5=64,a3+a5=20,且公比q为大于1的数.
∴${a}_{1}^{2}{q}^{6}$=64,${a}_{1}({q}^{2}+{q}^{4})$=20,
解得q=2,a1=1.
∴an=2n-1.
(2)设bn=2n-1,
∴{an+bn}前n项和=(1+2+22+…+2n-1)+[1+3+…+(2n-1)]
=$\frac{{2}^{n}-1}{2-1}$+$\frac{n(1+2n-1)}{2}$
=2n-1+n2.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{8}{9}$ | D. | -$\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com